K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

ta có phương trình đó 

<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)

đến đây đưa về ước của 3 thì tự lập bảng nhé

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$

$\Leftrightarrow x^4+x\vdots x^4+1$

$\Leftrightarrow x^4+1+x-1\vdots x^4+1$

$\Leftrightarrow x-1\vdots x^4+1$

Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$

Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$

Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$

$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)

Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$

$\Leftrightarrow x^4+x\leq 0$

$\Leftrightarrow x(x^3+1)\leq 0$

$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$

Với $x=-1$ thì $y=0$

Với $x=0$ thì $y=1$

Vậy..........

DD
27 tháng 11 2021

Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.

mà \(2x+1\)lẻ 

\(\Rightarrow\)\(5y\) là số chẵn

\(\Rightarrow\)\(y\) là số chắn

\(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn

\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ

\(\Rightarrow\)\(x=\pm1\).

Với \(x=1\)ta có: 

\(\left(5y+3\right)\left(y+3\right)=65\)

suy ra \(y=2\).

Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn. 

Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).

28 tháng 11 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ

<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ 

=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

25 tháng 11 2023

Sử dụng phương pháp Delta cho bài toán này:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)

Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.

Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)

\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).

Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại) 

Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Vậy....

Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)

\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)

Đến đây ta xét các trường hợp:

Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)

Vậy...

 

 

27 tháng 11 2023

cảm ơn bạn nhưng còn hơi dài =))