Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$
$\Leftrightarrow x^4+x\vdots x^4+1$
$\Leftrightarrow x^4+1+x-1\vdots x^4+1$
$\Leftrightarrow x-1\vdots x^4+1$
Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$
Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$
Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$
$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)
Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$
$\Leftrightarrow x^4+x\leq 0$
$\Leftrightarrow x(x^3+1)\leq 0$
$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$
Với $x=-1$ thì $y=0$
Với $x=0$ thì $y=1$
Vậy..........
Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.
mà \(2x+1\)lẻ
\(\Rightarrow\)\(5y\) là số chẵn
\(\Rightarrow\)\(y\) là số chắn
Có \(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn
\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ
\(\Rightarrow\)\(x=\pm1\).
Với \(x=1\)ta có:
\(\left(5y+3\right)\left(y+3\right)=65\)
suy ra \(y=2\).
Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn.
Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ
<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ
=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
x( x + y )2 - y + 1 = 0
<=> x( x2 + 2xy + y2 ) - y + 1 = 0
<=> x3 + 2x2y + xy2 - y + 1 = 0
<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)
Coi (*) là phương trình bậc 2 ẩn y , x là tham số
(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0
<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥ 0
<=> -4x2 - 4x + 1 ≥ 0
<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)
Vì x nguyên => x ∈ { -1 ; 0 }
+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)
+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)
Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
ta có phương trình đó
<=> \(x^2+4x+4-y^4=3\Leftrightarrow\left(x+2\right)^2-y^4=3\Leftrightarrow\left(x+2-y^2\right)\left(x+2+y^2\right)=3\)
đến đây đưa về ước của 3 thì tự lập bảng nhé