\(6x^2+5y^2=74\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

23 tháng 2 2017

ta thấy   x^2 >hoac =0 nen 6.x^2 > hoac =0

             ý^2> hoặc =0 nên 5.y^2 > hoặc =0

ta co 74 =0+74=1+73=..............=74+0

mà 6.x^2 chia hết cho 6 

5.y^2 chia hết cho 5  

vậy ta có bảng  ( bạn tự lập nha)

vay cặp số (x,y) la (2:3)

23 tháng 2 2017

dung thi nhan tin cho minh nha 

3 tháng 3 2020

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

17 tháng 2 2018

Vì \(\left(x-2\right)^2\ge0\) và \(\left(y-3\right)^2\ge0\) nên \(\left(x-2\right)^2.\left(y-3\right)^2\ge0\)

Mà \(-4< 0\) nên không có các số nguyên tố x, y thoả mãn đề bài 

Vậy không có số nguyên tố x và y 

28 tháng 2 2018

Ta có:\(y\left(x-1\right)=x^2+2\)

\(\Rightarrow y\left(x-1\right)-x^2=2\)

\(\Rightarrow y\left(x-1\right)-x^2+1=3\)

\(\Rightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)

\(\Rightarrow y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=3\)

\(\Rightarrow\left(y-x-1\right)\left(x-1\right)=3\)

Vì x,y nguyên nên ta có bảng

x-131-1-3
y-x-113-3-1
x420-2
y6824

Vậy \(\left(x,y\right)\in\left\{\left(4,6\right);\left(2,8\right);\left(0,2\right);\left(-2,4\right)\right\}\) thỏa mãn