\(x^3+y^3=2019\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Đặt: \(x^{673}=a;y^{673}=b\Rightarrow a^3=b^3-b^2-b+2\)

\(+,b=0\Rightarrow a^3=-2\left(\text{vô lí}\right)\)

\(+,b=1\Rightarrow a=1\left(\text{thỏa mãn}\right)\)

\(+,b=-1\Rightarrow a^3=3\left(\text{vô lí vì a nguyên}\right)\)

\(+,b=-2\Rightarrow a^3=8\Leftrightarrow a=2\left(\text{loại vì x;y không nguyên}\right)\)

\(+,b\ne1;0;-1;-2\Rightarrow\left(b-1\right)^3< b^3-b^2-b+2< b^3\left(\text{nên loại}\right)\)

bạn tự kết luận

24 tháng 5 2019

Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)

\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)

Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)

                                    \(=\left(x-y+z\right)\left(x+y+z\right)\)

Vì   \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên

\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa) 

Kết luận...

18 tháng 10 2020

ảnh đẹp

3 tháng 10 2019

mình không biết là đúng không nhưng mình làm vậy này 
Biến đổi vế phải ta có :

VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2

=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp 

mà tích của 3 số nguyên liên tiếp không thể là số chính phương 

=>{x-2019=0

     {y-1=0 hoặc y-2=0 hoặc y-3 =0 

vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)

9 tháng 7 2022

@vvvv sai rồi nha. 

22 tháng 10 2019

Nếu y=0x25x+6=0x2;3y=0⇒x2−5x+6=0⇒x∈2;3

-Nếu y=1x25x+4=0x1;4y=1⇒x2−5x+4=0⇒x∈1;4

-Nếu y>1y>1

 3y=(x2)(x3)+1x1(mod3)x=3k+1(kN)3y=(x−2)(x−3)+1⇒x≡1(mod3)⇒x=3k+1(k∈N)

 Thay vào đầu bài ta có 9k29k+3=3y3k23k+1=3y19k2−9k+3=3y⇒3k2−3k+1=3y−1

 Nhận thấy 3y13,3k23k+11(mod3)3y−1⋮3,3k2−3k+1≡1(mod3)⇒ (loại)

Vậy pt có 4 nghiệm nguyên