Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
- Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Với x = 0 thì \(y^3=2\) (vô nghiệm)
Với x khác 0.Dễ thấy \(y^3>x^3\)
Có x khác 0 và x thuộc Z nên \(x^2\ge1\Rightarrow x^2-1\ge0\)
Lại có: \(y^3=\left(x+1\right)^3-\left(x^2-1\right)\le\left(x+1\right)^3\)
Từ đây suy ra \(x^3< y^3\le\left(x+1\right)^3\).Nên:
\(y^3=\left(x+1\right)^3\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\)
\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)
Thay vào tìm y.
ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)
\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)
Vậy x<y<x+2 mà x,y thuộc Z => y=x+1
thay y=x+1 vào phương trình ta được:
\(x^3+2x^2+3x+2=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
với x=1 thì y=x+1=2
với x=-1 thì y=x+1=0
Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)
Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!
+) Ta thấy x = 0 không có y nguyên thỏa mãn
+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)
Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)
Từ đây tìm được x=1, y=2