K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2020

x^2+y^2=9900 (1)

do x^2,y^2 chia cho 4 dư 0 hoặc 1, mà tổng x^2 +y^2(là 9900) chia hết cho 4 nên x và y đều chẵn 

Đặt x=2a ,y=2b với a,b là các số nguyên

Ta có (2a)^2+(2b)^2=9900

<=>a^2+b^2=2465 (2)

 VT của (2) chia cho 4 dư 0,1,2.Còn VP chia cho4 dư 3

Do đó phương trình (2) không có nghiệm nguyên, tức là phương trình (1) không có nghiệm nguyên

22 tháng 11 2023

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

21 tháng 1 2018

  Tìm các số nguyên x;y biết :

x2 + y2 = 9900

2 ( x + y ) = 9900

    x + y     = 9900 : 2

    x + y     =  4950

Đến đoạn này rồi thì mk chịu nha . Sorry nhiều

12 tháng 1 2021

\(x^2-2x+y^2+4y-4< 0\)

⇔ \(\left(x-1\right)^2+\left(y+2\right)^2< 9\)

Mà \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\) và 2 số này đều là bình phương của một số nguyên

Nên ta có các trường hơpj

TH1 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) (TM)

TH2 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=1\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

TH3 : \(\left\{{}\begin{matrix}\left(x-1\right)^2=4\\\left(y+2\right)^2=1\end{matrix}\right.\) .....

Thôi tự túc mấy trường hợp còn lại. Nghi đề sai lắm :((

 

12 tháng 1 2021

xin lỗi đề mình đánh sai phải là -4y+4

19 tháng 3 2019

Ta có:

  x 2 +   102 =   y 2 ⇔ y 2 - x 2 = 102 N h ậ n   t h ấ y   h i ệ u   h a i   b ì n h   p h ư ơ n g   l à   m ộ t   s ố   c h ẵ n   N ê n   x , y   c ù n g   l à   s ố   c h ẵ n   h o ặ c   c ù n g   l à   s ố   l ẻ S u y   r a   y - x ;   y + x   l u ô n   l à   s ố   c h ẵ n   L ạ i   c ó   y 2 - x 2   =   102   ⇔ y - x y + x = 102 M à   y - x   v à   y + x   c ù n g   l à   s ố   c h ẵ n   S u y   r a   y - x y + x     c h i ế t   c h o   4   m à   102   k h ô n g   c h i a   h ế t   c h o   4   N ê n   k h ô n g   t ồ n   t ạ i   c ặ p   x ; y   t h ỏ a   m ã n   đ ề   b à i .                    

Đáp án cần chọn là :A

10 tháng 3 2022

-Lú thiệt sự.... :))

10 tháng 3 2022

-Lú thiệt sự.... :))

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

13 tháng 12 2020

cm bn