\(15x^3+10x^2y+9x+6y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

a)Với y=1 ta có hpt:

\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)

Vậy nghiệm của hpt là (2;1) khi m=4

b)đợi suy nghĩ

 

5 tháng 7 2021

Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\) <=> \(\hept{\begin{cases}2x-2my=4\\m^2x+2my=m\end{cases}}\)

<=> \(2x+m^2x=4+m\)

<=> \(x\left(m^2+2\right)=4+m\)

<=> \(x=\frac{4+m}{m^2+2}\) => \(y=\frac{1-mx}{2}=\frac{1-m\cdot\frac{4+m}{m^2+2}}{2}=\frac{\frac{m^2+2-4m-m^2}{m^2+2}}{2}\)

=> \(y=\frac{2-4m}{2\left(m^2+2\right)}=\frac{1-2m}{m^2+2}\)

Theo bài ra, ta có: \(3x+2y-1\ge0\)

<=> \(3\cdot\frac{4+m}{m^2+2}+2\cdot\frac{1-2m}{m^2+2}-1\ge0\)

<=> \(\frac{3\left(4+m\right)+2\left(1-2m\right)-m^2-2}{m^2+2}\ge0\)

<=> \(12+3m+2-4m-m^2-2\ge0\) (vì \(m^2+2>0\))

<=> \(-m^2-m+12\ge0\)

<=> \(m^2+4m-3m-12\le0\)

<=> \(\left(m+4\right)\left(m-3\right)\le0\)

<=> \(\hept{\begin{cases}m+4\ge0\\m-3\le0\end{cases}}\) hoặc \(\hept{\begin{cases}m+4\le0\\m-3\ge0\end{cases}}\)

<=> \(\hept{\begin{cases}m\ge-4\\m\le3\end{cases}}\) hoặc \(\hept{\begin{cases}m\le-4\\m\ge3\end{cases}}\)

<=> \(-4\le m\le3\)

6 tháng 1 2022

Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}-mx+m^2y=-2m\\mx+2y=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-my=2\\\left(m^2+2\right)y=1-2m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=my+2\\y=\frac{1-2m}{m^2+2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=m\left(\frac{1-2m}{m^2+2}\right)\\y=\frac{1-2m}{m^2+2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{m-2m^2}{m^2+2}\\y=\frac{1-2m}{m^2+2}\end{cases}}\)

Để \(3x+2y-1\ge0\)thì \(3\left(\frac{m-2m^2}{m^2+2}\right)+2\left(\frac{1-2m}{m^2+2}\right)\ge1\)\(\Leftrightarrow\frac{3m-6m^2}{m^2+2}+\frac{2-4m}{m^2+2}\ge1\)

\(\Leftrightarrow\frac{-6m^2-m+2}{m^2+2}\ge1\)\(\Leftrightarrow-6m^2-m+2\ge m^2+2\)\(\Leftrightarrow-7m^2-m\ge0\)\(\Leftrightarrow-m\left(7m+1\right)\ge0\)\(\Leftrightarrow m\left(7m+1\right)\le0\)Có hai trường hợp xảy ra:

TH1: \(\hept{\begin{cases}m\ge0\\7m+1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le-\frac{1}{7}\end{cases}}}\)(loại)

TH2: \(\hept{\begin{cases}m\le0\\7m+1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\le0\\m\ge-\frac{1}{7}\end{cases}}\)

Vậy [...]

29 tháng 1 2020

Ta có: \(2\left(x^2+y^2\right)=1+xy\)

\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)

\(P=7\left(x^4+y^4\right)+4x^2y^2\)

\(=7x^4+7y^4+4x^2y^2\)

\(\Rightarrow P=28x^3+28y^3+16xy\)

\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)

\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)

24 tháng 10 2020

Trả lời nhanh câu hỏi này giùm tớ nào ?                                                                                                                                                                                                                                                                                                                                                                                    

18 tháng 10 2020

đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)

Xét y = 0 => PT vô nghiệm

Xét y khác 0:

Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)

\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)

\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)

\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)

Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)

\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)

\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)

\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)

Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)

\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)

Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)

\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)

\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)

\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)

\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)

Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)

\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)

\(\Leftrightarrow4\sqrt{x}=13-4x\)

\(\Leftrightarrow16x=169-104x+16x^2\)

\(\Leftrightarrow16x^2-120x+169=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)

Nếu \(x-3=0\Rightarrow x=y=3\)

Vậy ta có 3 cặp số (x;y) thỏa mãn: ...

18 tháng 10 2020

Thử lại ta thấy cặp nghiệm vô tỉ:

\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:

\(x=y=3\)

1 tháng 5 2020

Gắt thế,IMO 2003

Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)

Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn 

Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)

\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)

Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương

Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)

\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)

Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)

Vậy.........................