Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
x + 2 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | -1 | 5 | -3 | -9 |
y | 5 | -1 | -9 | -3 |
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)
a) 2xy-6x+y=13
<=>2x(y-3)+(y-3)=10
<=>(y-3)(2x+1)=10
=>y-3 và 2x+1 thuộc Ư(10)
=>Ư(10)={-1;1;-2;2;-5;5;-10;10}
Vì 2x+1 luôn lẻ
=>2x+1={-1;1;-5;5}
Ta có bảng sau:
2x+1 | -1 | 1 | -5 | 5 |
y-3 | -10 | 10 | -2 | 2 |
x | -1 | 0 | -3 | 2 |
y | -7 | 13 | 1 | 5 |
NX | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;13); (2;5)
b) 2xy+2y-x=16
<=>x(2y-1)+(2y-1)=15
<=>(2y-1)(x+1)=15
=>2y-1 và x+1 thuộc Ư(15)
=>Ư(15)={-1;1;-3;3;-5;5;-15;15}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
2y-1 | -15 | 15 | -5 | 5 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 | -6 | 4 | -16 | 14 |
y | -7 | 8 | -2 | 3 | -1 | 2 | 0 | 1 |
NX | loại | tm | loại | tm | loại | tm | loại | tm |
Vậy các cặp gt (x;y) thỏa mãn là:
(0;8); (2;3); (4;2); (14;1)
<=> Ta có{{y−2x−3∈Ư(11)={±1;±11}
Ta có bảng sau:
x-3 | -11 | -1 | 1 | 11 |
y-2 | -1 | -11 | 11 | 1 |
x | -8 | 2 | 4 | 14 |
y | 1 | -9 | 13 | 3 |
Vậy có 4 cặp số nguyên x , y thỏa mãn: (−8;1);(2;−9);(4;13);(14;3)
ta có
\(xy-2x+y+7=0\Leftrightarrow xy-2x+y-2=-9\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-9\Rightarrow x+1\in\left\{\pm1;\pm3;\pm9\right\}\)
hay \(x\in\left\{-10,-4,-2,0,2,8\right\}\)
tương ứng ta tìm được cặp x,y là
\(\left(-10,3\right),\left(-4,5\right),\left(-2,11\right),\left(0,-7\right),\left(2,-1\right),\left(8,1\right)\)
\(2x-xy-y=7\)
\(\Rightarrow2x-y\left(x+1\right)=7\Rightarrow y=\frac{2x+7}{x+1}=\frac{2\left(x+1\right)+5}{x+1}=2+\frac{5}{x+1}\)
y nguyên khi x+1 là ước của 5
\(\Rightarrow\left(x+1\right)=\left\{-5;-1;1;5\right\}\Rightarrow x=\left\{-6;-2;0;4\right\}\)
\(\Rightarrow y=\left\{1;-3;7;3\right\}\)
\(\dfrac{1}{5}+\dfrac{2}{7}-1< x< \dfrac{13}{3}+\dfrac{6}{5}+\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{7}{35}+\dfrac{10}{35}-\dfrac{35}{35}< x< \dfrac{65}{15}+\dfrac{18}{15}+\dfrac{4}{15}\)
\(\Leftrightarrow\dfrac{-18}{35}< x< \dfrac{29}{5}\)
\(\Leftrightarrow\dfrac{-18}{35}< \dfrac{35x}{35}< \dfrac{203}{35}\)
\(\Leftrightarrow-18< 35x< 203\)
\(\Leftrightarrow x\in\left\{0;1;2;3;4;5\right\}\)
b, xy-x+2y=3
<=> xy-x+2y-3=0
<=>x(y-1)+2(y-1)-1=0
<=> (y-1)(x+2) =1
Ta có bảng sau
Vậy...