\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)

\(\Leftrightarrow x^{2017}=\frac{y^2+2y+1}{y+2}\)

\(\Leftrightarrow x^{2017}=y+\frac{1}{y+2}\)

Để vế phải là số nguyên thì y+2 phải là ước của 1

\(\Leftrightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)

TH1: \(y=-3\Rightarrow x^{2017}=-4\)

Ta thấy x không phải là số nguyên

TH2: \(y=-1\Rightarrow x^{2017}=0\Rightarrow x=0\)

Vậy phương trình có cặp nghiệm (x,y) nguyên thỏa mãn là (0;-1)

9 tháng 10 2017

Lời giải:

Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)

Thực hiện biến đổi P

\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)

\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)

\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)

\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)

\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)

Tìm max:

Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)

Vì \(x\)  nguyên dương \(\Rightarrow x\geq 1\)

\(y\geq 1\Rightarrow x=2017-y\leq 2016\)

Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)

Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị

Tìm min: 

Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)

Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)

Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.

3 tháng 4 2020

\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)

<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)

<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)

<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)

<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)

=>phương trình vô nghiệm

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do