K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

b. Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath

10 tháng 1 2022

x,y∈Z không bạn

10 tháng 1 2022

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:

$3xy+2x-5y=6$

$x(3y+2)-5y=6$

$3x(3y+2)-15y=18$

$3x(3y+2)-5(3y+2)=8$

$(3y+2)(3x-5)=8$

Đến đây lập bảng xét giá trị thôi bạn.

=>3xy-3x=6

=>3x(y-1)=6

=>x(y-1)=2

=>\(\left(x;y-1\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(2;2\right);\left(-1;-1\right);\left(-2;0\right)\right\}\)

9 tháng 11

bài này sẽ giải nếu x,y là số nguyên

ĐKXĐ: x≠2

A=\(\dfrac{3\left(x++y\right)\left(x-2\right)+1}{x-2}\)

A=\(\dfrac{3\left(x+y\right)\left(x-2\right)}{x-2}+\dfrac{1}{x-2}\)

A=3(x+y)+\(\dfrac{1}{x-2}\)

Vì x;y; A là số nguyên nên \(\dfrac{1}{x-2}\) cũng là số nguyên

hay x-2⋮1

hay x-2ϵƯ(1)=(-1;1)

suy ra x=1;3

tự tìm y

 

17 tháng 7 2019

b  \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

=>\(\frac{1}{x+1}=\frac{1}{100}\)

=> x+1 =100

=>x=99

17 tháng 7 2019

b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Rightarrow x+1=100\)

\(\Rightarrow x=99\)

c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)

\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)

\(\Rightarrow50.\left(x+2\right)=99\)

\(\Rightarrow x+2=\frac{99}{50}\)

\(\Rightarrow x=-\frac{1}{99}\)

d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)

Lâp bảng xét 6 trường hợp: 

\(2x+1\)\(1\)\(6\)\(2\)\(3\)\(-2\)\(-3\)
\(y-2\)\(6\)\(1\)\(3\)\(2\)\(-3\)\(-2\)
\(x\)\(0\)\(\frac{5}{2}\)\(\frac{1}{2}\)\(1\)\(-\frac{3}{2}\)\(-2\)
\(y\)\(8\)\(3\)\(5\)\(4\)\(-1\)\(0\)

Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)

e) \(x^2-3xy+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)+3y-x=1\)

\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)

\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)

Lại có : 1 = 1.1 = (-1) . (-1)

Lập bảng xét các trường hợp : 

\(x-1\)\(1\)\(-1\)
\(x-3y\)\(1\)\(-1\)
\(x\)\(2\)\(0\)
\(y\)\(\frac{1}{3}\)\(\frac{1}{3}\)

Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)