K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(2x^2+2y^2-2xy+x+y=0\)

\(\Leftrightarrow 2x^2+x(1-2y)+(2y^2+y)=0\)

Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm thì:

\(\Delta=(1-2y)^2-8(2y^2+y)\geq 0\)

\(\Leftrightarrow -12y^2-12y+1\geq 0\)

\(\Rightarrow -12y^2-12y+24>0\)

\(\Rightarrow -y^2-y+2>0\)

\(\Rightarrow (1-y)(y+2)>0\Rightarrow -2< y< 1\)

\(y\in\mathbb{Z}\Rightarrow y\in \left\{-1;0\right\}\)

+) Nếu \(y=-1\Rightarrow 2x^2+2+2x+x-1=0\)

\(\Leftrightarrow 2x^2+3x+1=0\)

\(\Leftrightarrow (2x+1)(x+1)=0\Rightarrow x=-1\) vì $x$ nguyên

+) Nếu \(y=0\Rightarrow 2x^2+x=0\Leftrightarrow x(2x+1)=0\Rightarrow x=0\) (vì $x$ nguyên)

Vậy \((x,y)\in \left\{(-1,-1); (0,0)\right\}\)

24 tháng 3 2019

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!

24 tháng 9 2018

\(x^2-3y^2+2xy-2x+6y-4=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)

Làm nôt

4 tháng 3 2019

Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)

Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)

\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)

Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)

\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)

Đến đây bí!

17 tháng 2 2021

\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)0

\(< =>\left(x^2+2xy+y^2\right)+7\left(x+y\right)+y^2+10=0\)

\(< =>\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

Đặt a=x+y ta có

\(a^2+7a+10+y^2=0\)

\(< =>a^2+7a+\frac{49}{4}-\frac{9}{4}+y^2=0\)

\(< =>\left(a+\frac{7}{2}\right)^2+y^2=\frac{9}{4}\)

Vì \(\frac{9}{4}\)=\(0+\frac{9}{4}\)và \(a+\frac{7}{2}>=y\)nên \(\hept{\begin{cases}x+y+\frac{7}{2}=\frac{3}{2}\\y=0\end{cases}}\)\(=>\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5