Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2xy+y=10x+17\) \(\left(x,y\in Z\right)\)
\(2xy+y-10x=17\)
\(y\left(2x+1\right)-5.2x=17\)
\(y\left(2x+1\right)-5.2x-5=17-5\)
\(y\left(2x+1\right)-5\left(2x+1\right)=12\)
\(\left(2x+1\right)\left(y-5\right)=12\)
Vì \(x,y\in Z\Rightarrow2x+1;y-5\in Z\) và \(2x+1⋮̸\) \(2\)
\(2x+1;y-5\inƯ\left(12\right)\)
Ta có bảng :
\(x\) | \(2x+1\) | \(y-5\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(1\) | \(12\) | \(17\) | \(TM\) |
\(1\) | \(3\) | \(4\) | \(9\) | \(TM\) |
\(-1\) | \(-1\) | \(-12\) | \(-7\) | \(TM\) |
\(-2\) | \(-3\) | \(-4\) | \(1\) | \(TM\) |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là : \(\left(0,17\right);\left(1,9\right);\left(-1;-7\right);\left(-2,1\right)\)
~Chúc bn học tốt ~
2xy+y=10x+17
\(\Leftrightarrow\)2xy+y-10x-17=0
\(\Leftrightarrow\)y.(2x+1)-5(2x+1)=12
\(\Leftrightarrow\) ( 2x+1).(y-5)=12
2x+1; y-5 là ước của 12
ta thấy 2x +1 luôn là số lẻ.
ta có
2x+1 | 1 | 3 | -3 | 1 | |
y-4 | 4 | 12 | -4 | -12 |
ta giải theo phương trình rồi tìm x;y
lam phan b thoi chu phan a de xem da
x2y+x+2xy=-9
=>(x.y).(x+2)+x=-9
=>(x.y).(x+2)+x+2=-9
=>(x+2).[(x.y)+1]=-9=9.1;1.9;3.(-3);-3.3
x+2 | 9 | 1 | 3 | -3 |
x | 7 | -1 | 1 | -5 |
x.y+1 | 1 | 9 | -3 | 3 |
y | 0 | -8 | -2 | -0,4 |
Kết luận | TM | TM | TM | loại |
Vậy (x;y)=(7;0);(-1;-8);(1;-2)
\(2xy-10x+y=17\Leftrightarrow2xy-10x+y-5=12\Leftrightarrow.\)\(\Leftrightarrow2x\left(y-5\right)+\left(y-5\right)=12\Leftrightarrow\left(y-5\right)\left(2x+1\right)=12.\)\(đk:.y>6\)
- Ta phân tích số 12 thành tích của hai số, lưu ý khi x là số tự nhiên thì 2x + 1 là một số lẻ. Và dĩ nhiên khi đó (y - 5) là số chẵn.
Có hai trường hợp sau :
-Trường hợp 1: \(\hept{\begin{cases}2x+1=1\\y-6=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=18\end{cases}}}\)
-Trường hợp 2: \(\hept{\begin{cases}2x+1=3\\y-6=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=10\end{cases}}}\)
Trả lời x = 0 , y = 18 và x = 1 , y = 10
Xin đính chính lại : (Cháu đánh máy nhầm 5 thành 6 - thành thật xin lỗi mọi người)
.....Có hai trường hợp xẩy ra :
- Trường hợp 1 : \(\hept{\begin{cases}2x+1=1\\y-5=12\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=17\end{cases}}}\)
- Trường hợp 2 : \(\hept{\begin{cases}2x+1=3\\y-5=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)
Trả lời : x = 0 , y = 17 và x = 1 , y = 9
\(2xy-10x+y=17\)
\(\Leftrightarrow2x\left(y-5\right)+\left(y-5\right)=12\)
\(\Leftrightarrow\left(2x+1\right)\left(y-5\right)=12\)
Vì x \(\in\) N nên 2x + 1 là ước lẻ của 12 \(\Rightarrow2x+1\in\left\{1;3\right\}\)
Ta có bảng sau:
2x + 1 | 1 | 3 |
y - 5 | 12 | 4 |
x | 0 | 1 |
y | 17 | 9 |
a) Vì 2x-1 là bội của x+5 nên 2x-1 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( 2x-1) - ( x+5) \(⋮\)x+5
=> (2x-1) - 2(x+5) \(⋮\)x+5
=> 2x -1 - 2x -10 \(⋮\)x+5
=> -11 \(⋮\)x+5
=> x+5 \(\in\)Ư(11) ={ 1;11; -1; -11}
=> x\(\in\){ -4; 6; -6; -16}
Vậy....
Ta có: \(x-2xy=2\)
\(\Rightarrow x\left(1-2y\right)=2\)
Vì \(x,y\in Z\Rightarrow x;1-2y\in Z\)
\(\Rightarrow x;1-2y\inƯ\left(2\right)=\left(\pm1;\pm2\right)\)
Ta có bảng giá trị:
x | 1 | 2 | -1 | -2 |
1-2y | 2 | 1 | -2 | -1 |
y | \(\varnothing\) | 0 | \(\varnothing\) | 1 |
C/L | L | C | L | C |
Đối chiếu điều kiện \(x,y\inℤ\)\(\Rightarrow\left(x,y\right)=\left(1;0\right);\left(-1;1\right)\)
Nhớ k mình nhé.
\(2xy+y=10x+17\Leftrightarrow y\left(2x+1\right)=10x+17\Leftrightarrow y=\frac{10x+17}{2x+1}.Vì,y,nguyên,nên:10x+17⋮2x+1\Leftrightarrow10x+5+12⋮2x+1\Leftrightarrow5\left(2x+1\right)+12⋮2x+1\Leftrightarrow12⋮2x+1.Mà,2x+1,lẻ,nên:2x+1\in\left\{-1;1;3;-3\right\}\Leftrightarrow2x\in\left\{-2;0;2;-4\right\}\Leftrightarrow x\in\left\{-1;0;1;-2\right\}\)
\(+,x=-1\Rightarrow-2y+y=7\Leftrightarrow-y=7\Leftrightarrow y=-7\Rightarrow\left(x,y\right)=\left(-1;-7\right)\left(thoaman\right)\)
\(+,x=0\Rightarrow y=17\left(thoaman\right)\)
\(+,x=1\Rightarrow3y=27\Rightarrow y=9\left(thoaman\right)\)
\(+,x=-2\Rightarrow-3y=-3\Leftrightarrow3y=3\Leftrightarrow y=1\left(thoaman\right)\)
\(Vậy:\left(x,y\right)\in\left\{\left(-1;-7\right);\left(0;17\right);\left(1;9\right);\left(-2;1\right)\right\}\)
\(2xy-10x+y=17\)
\(\Leftrightarrow2x\left(y-5\right)+\left(y-5\right)=12\)
\(\Leftrightarrow\left(2x+1\right)\left(y-5\right)=12\)
Vì x \(\in\) N nên 2x + 1 là ước lẻ của 12 \(\Rightarrow2x+1\in\left\{1;3\right\}\)
Ta có bảng sau: