\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)

giúp mk...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

\(\frac{x}{4}\)\(\frac{1}{y}\)=\(\frac{1}{2}\)

\(\frac{x}{4}\)-\(\frac{1}{2}\)\(\frac{1}{y}\)

\(\frac{x}{4}\)-\(\frac{2}{4}\)=\(\frac{1}{y}\)

\(\frac{x-2}{4}\)=\(\frac{1}{y}\)

\(\Rightarrow\)\(y\cdot\left(x-2\right)\)= 4

Vì \(y\in Z,x-2\in Z\)nên ta có bảng:

y142-1-4-2
x-2412-4

-1

-2
x634-210
7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

7 tháng 8 2020

a) 3/x + 1/3 = y/3

3/x = y/3 - 1/3

3/x = y-1/3

=> 3 . 3 = x (y - 1)

=> 9 = x (y - 1)

=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}

Ta có bảng sau:

x-9-3-1139
y-1-1-3-9921
y0-2-81032

Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.

b) x/6 - 1/y = 1/2

1/y = x/6 - 1/2

1/y = x/6 - 3/6

1/y = x-3/6

=> 6 = y (x - 3)

=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}

...

Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.

7 tháng 8 2020

Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

=> \(\frac{3}{x}=\frac{y-1}{3}\)

=> x(y - 1) = 9

Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)

Lập bảng xét các trường hợp ta có

x19-1-93-3
y - 191-9-13-3
y102-804-2

Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)

b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)

=> \(\frac{xy-6}{6y}=\frac{1}{2}\)

=> 2(xy - 6) = 6y

=> xy - 6 = 3y

=> xy - 3y = 6

=> y(x - 3) = 6

Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)

Lập bảng xét các trường hợp

y16-1-623-2-3
x - 361-6-132-3-2
x94-3-26501

Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.

21 tháng 6 2019

a) Ta có: \(\left(x-1\right)^2\ge\)\(\forall\)x

            \(\left|y+2\right|\ge0\)\(\forall\) y

=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)

=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy ...

b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)

=> \(\frac{3-2y}{6}=\frac{2}{x}\)

=> \(x\left(3-2y\right)=12\)

=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}

Do 3 - 2y là số lẽ , mà x,y \(\in\)Z

=> 3 - 2y \(\in\) {1; -1; 3; -3} 

Lập bảng :

3 - 2y1 -1 3 -3
   x 12 -12 4 -4
   y 1  2  0 3

Vậy ...

20 tháng 3 2018

a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\)    và   \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)

=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)

=> x-1=0

=> x=1

\(|\frac{1}{2}x-3y+1|=0\)

=> \(\frac{1}{2}.1-3y+1=0\)

=> \(\frac{1}{2}-3y=-1\)

=> \(3y=\frac{1}{2}-\left(-1\right)\)

=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)

=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

b) Có: \(x^2\le y;y^2\le z;z\le x\)

=> \(x^4\le y^2\) và \(y^2\le x\)

=> \(x^4\le x\)

=> \(x^4=x\)

=> \(x\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)\(y^2\le z\)và \(z\le x\)

=> \(x^4\le z\le x\)

Mà \(x^4=x\)

=> \(x^4=x=z\)

=> \(z\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)và \(y^2\le z\)

=> \(x^4\le y^2\le z\)

Mà \(x^4=x=z\)

=> \(x^4=y^2\)

=> \(y^2\in\left\{0;1\right\}\)

=> \(y\in\left\{0;1\right\}\)

c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)

=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)

\(=\frac{x+43}{6}\)

..........Chỗ này?! Có gì đó sai sai.........

Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi

d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)

=> \(ab^2c+abc^2=2+\left(-2\right)=0\)

=> \(abc\left(b+c\right)=0\)

Mà a;b;c là 3 số khác 0

=> \(abc\ne0\)

=> \(b+c=0\)

=> \(b=-c\)

\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)

=> \(abc\left(a+b-c\right)=0\)

\(abc\ne0\)

=> \(a+b-c=0\)

\(a^2bc-abc^2=-4-\left(-2\right)=-2\)

=> \(abc\left(a-c\right)=-2\)

Mà \(abc\ne0\)

=>\(a-c=-2\)

Có \(a+b-c=0\)

=> \(\left(a-c\right)+b=0\)

=> \(-2+b=0\)

=> \(b=2\)

 \(b=-c=2\)=> \(c=-2\)

=> \(a-\left(-2\right)=-2\)

=> \(a+2=-2\)

=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra  -__-

Mỏi tay quáááá