Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
a)
\(\left(x+1\right)\left(y-2\right)=5\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có bảng:
x+1 | 1 | -1 | 5 | -5 |
y-2 | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 7 | -3 | 3 | 1 |
Vậy \(\left(x;y\right)=\left(0;7\right),\left(-2;-3\right),\left(4;3\right),\left(-6;1\right)\)
b)
\(\left(x-5\right)\left(y+4\right)=-7\\ \Rightarrow\left(x-5\right),\left(y+4\right)\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Ta có bảng:
x-5 | 1 | -1 | 7 | -7 |
y+4 | -7 | 7 | -1 | 1 |
x | 6 | 4 | 12 | -2 |
y | -11 | 3 | -5 | -3 |
Vậy \(\left(x;y\right)=\left(6;-11\right),\left(4;3\right),\left(12;-5\right),\left(-2;-3\right)\)
b: =>3x+9=0 và y^2-9=0 và x+y=0
=>x=-3; y=3
a: (2x-5)(y+3)=-22
mà x,y là số nguyên
nên \(\left(2x-5;y+3\right)\in\left\{\left(1;-22\right);\left(11;-2\right);\left(-1;22\right);\left(-11;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;-25\right);\left(8;-5\right);\left(2;19\right);\left(-3;-1\right)\right\}\)
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
a: x/2=-5/y
=>xy=-10
=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)
b: =>xy=12
mà x>y>0
nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
c: =>(x-1)(y+1)=3
=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)
d: =>y(x+2)=5
=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)
a) x= 10; y = 25
b) x + 2 y + 10 = 1 5 => ( x = 2).5 = ( y = 10).1=> 5.x + 10 = y + 10
=> 5.x = y mà y – 3.x = 2
Nên x = 1; y = 5
c) x = 20 ; y = 25