K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

x2 + xy + y2 = x2y2

=> x2+ 2xy-xy+ y2 = x2y2

=> x2 + 2xy + y2 = x2y2 +xy

=> (x+y)2= xy.(xy+1)

Vì xy.(xy+1) là số chính phương mà xy,xy,1 là 2 số nguyên liên tiếp

(x+y)2= xy.(xy+1) 

Biến đổi VP ta có:xy.(xy+1)

=>xy=0

=> 2 TH

 x=0 hoặc y=0 

 (x+y)2= xy.(xy+1)

=> (x+y)2=0

=>x+y=0

=>x=-y

=>x=y=0

Vậy x=0 hoặc y=0

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

23 tháng 7 2015

=> x2 + 2xy + y= x2y2 + xy 

=> (x + y)2 = xy.(xy + 1)

=> xy. (xy + 1) là số chính phương mà xy; xy + 1 là 2 số nguyên liên tiếp 

Để (x + y)2 = xy.(xy + 1) <=> xy = 0 <=> x = 0 hoặc y = 0 

x+ y = 0 => x = - y

=> x = y = 0

Vậy x = y = 0 

 

5 tháng 12 2016

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm 

8 tháng 2 2018

\(\left(x+y\right)^2=xy\left(xy-1\right)\)

Với x,y nguyên, xy và xy-1 là 2 số nguyên liên tiếp=> xy=0 hoặc xy-1=0

24 tháng 3 2019

\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)

<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)

<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên

Có 2 TH

+) Trường hợp 1

\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn

+ Trương hợp 2

\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn

VÂỵ ....

23 tháng 12 2016

a ) x ^ 2 + 2xy + 7x + 7y + y ^2 + 10 = ( x + y ) ^2 + 7  ( x + y ) + 10 = ( x + y ) ( x + y + 17 )

23 tháng 12 2016

bạn ơi còn phần b

20 tháng 3 2015

gui cho mk cach lam voi

24 tháng 3 2019

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với  Em  tham khảo tại link này nhé!