Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
X2+2x-8y2=41
<=> X2+2x+1-8y2=41+1
<=>(x+1)2-8y2=42
<=>(x+1)2=42+8y2.
<=>(x+1)2=2(21+2y2)
· 21+2y2 là số lẻ, 2 là số chẳn.
· Do đó không có (x+1)2 thỏa yêu cầu bài toán
Ngọc ơi sai rồi. cái bước rút thừa số chung đấy 2*2=4 chứ đâu có bằng 8
pt⇔y2(x2−7)=(x+y)2(1)
Phương trình đã cho có nghiệm x=y=0x=y=0
Xét x,y\ne0x,y≠0, từ (1)(1) suy ra x^2-7x2−7 là một số chính phương
Đặt x^2-7=a^2x2−7=a2 ta có:
\left(x-a\right)\left(x+a\right)=7(x−a)(x+a)=7 từ đây tìm được x
Vậy (x,y)=(0,0);(4,-1);(4,2);(-4,1);(-4;-2)(x,y)=(0,0);(4,−1);(4,2);(−4,1);(−4;−2)
Học tốt^^
\(\Leftrightarrow\hept{\begin{cases}6x-5y=0\\8y-4z=0\\2x+y-z-4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x=5y\\2y=z\\2x+y-z=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=\frac{z}{12}\\2x+y-z=4\end{cases}}\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{12}=\frac{2x+y-z}{10+6-12}=\frac{4}{4}=1\)
\(\Rightarrow x=5\)
\(y=6\)
\(z=12\)
x2 + 2x - 8y2 = 41
<=> (x + 1)2 - 8y2 = 42 (1)
Ta có:
\(-8y^2⋮2\) và \(42⋮2\) \(\Rightarrow\left(x+1\right)^2⋮2\Rightarrow x⋮̸2\)
Đặt x = 2k + 1 \(\left(k\in Z\right)\), ta có:
\(\left(1\right)\Leftrightarrow\left(2k+1+1\right)^2-8y^2=42\)
\(\Leftrightarrow4\left(k+1\right)^2-8y^2=42\)
\(\Leftrightarrow2\left(k+1\right)^2-4y^2=21\)
Ta có:
\(VT⋮2\) mà \(VP⋮̸2\)
Vậy pt không có nghiệm nguyên.
sai