K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2023

mọi người giúp em đi plss

=>4x^2+8xy+4y^2+4y^2+4y+1-9=0

=>(2x+2y)^2+(2y+1)^2=9

mà x,y nguyên

nên (2y+1)^2=9 và (2x+2y)^2=0

=>x+y=0 và \(2y+1\in\left\{3;-3\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-1;1\right);\left(2;-2\right)\right\}\)

25 tháng 1 2018

2 tháng 3 2022

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)

\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)

\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)

Vì x,y nguyên nên ta có các trường hợp sau:

TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)

Các TH còn lại bạn tự làm nhé

2 tháng 3 2022

\(x^2+6xy+5y^2-4y-8=0\)

\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)

\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)

\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)

-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)

 

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0

DD
4 tháng 7 2021

\(x^2+y^2+\frac{8xy}{x+y}=16\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)

\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))

\(\Leftrightarrow y=4-x\).

\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)

\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)

Dấu \(=\)khi \(x=3\Rightarrow y=1\).

18 tháng 8 2020

a) \(xy+3x+y=8\)

\(\Leftrightarrow\left(xy+3x\right)+\left(y+3\right)=11\)

\(\Leftrightarrow x\left(y+3\right)+\left(y+3\right)=11\)

\(\Leftrightarrow\left(x+1\right)\left(y+3\right)=11=1.11=\left(-1\right).\left(-11\right)\)

Ta xét các TH sau:

\(\hept{\begin{cases}x+1=1\\y+3=11\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=8\end{cases}}\)

\(\hept{\begin{cases}x+1=11\\y+3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=-2\end{cases}}\)

\(\hept{\begin{cases}x+1=-1\\y+3=-11\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-14\end{cases}}\)

\(\hept{\begin{cases}x+1=-11\\y+3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=-4\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: (0;8) ; (10;-2) ; (-2;-14) ; (-12;-4)

18 tháng 8 2020

a. xy + 3x + y = 8

=> x ( y + 3 ) + ( y + 3 ) = 8 + 3 = 11

=> ( x + 1 ) ( y + 3 ) = 11

 x + 1 y + 3 x y
 11 1 10 - 2
 1  11 0 8
 - 11 - 1 - 12 - 4
 - 1 - 11 - 2 - 14

Vậy các cặp ( x ; y ) thỏa mãn đề bài là ( 10 ; - 2 ) ; ( 0 ; 8 ) ; ( - 12 ; - 4 ) ; ( - 2 ; - 14 )

b. Không rõ đề

7 tháng 12 2019

\(5x^2+8xy+5y^2+4x-4y+8=0\)

\(\Leftrightarrow\left(x^2+4x+4\right)+\left(y^2-4y+4\right)+4x^2+4y^2+8xy=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-2\right)^2+4\left(x+y\right)^2=0\)

\(\Leftrightarrow x=-2;y=2\)

Thay vào P ta có:

\(P=\left(2-2\right)^8+\left(1-2\right)^{11}+\left(2-1\right)^{2018}\)

\(=0-1+1=0\)

31 tháng 8 2023

a) \(x\left(y-7\right)+y-12=0\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y-7\right)+y-7-5=0\)

\(\Rightarrow\left(x+1\right)\left(y-7\right)=5\)

\(\Rightarrow\left(x+1\right);\left(y-7\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;2\right);\left(0;12\right);\left(-6;6\right);\left(4;8\right)\right\}\)

31 tháng 8 2023

b) xy - 6x - 4y + 13 = 0

x(y - 6) - 4y + 24 - 11 = 0

x(y - 6) - 4(y - 6) = 11

(y - 6)(x - 4) = 11

TH1: x - 4 = 1 và y - 6 = 11

*) x - 4 = 1

x = 5

*) y - 6 = 11

y = 17

TH2: x - 4 = -1 và y - 6 = -11

*) x - 4 = -1

x = 3

*) y - 6 = -11

y = -5

TH3: x - 4 = 11 và y - 6 = 1

*) x - 4 = 11

x = 15

*) y - 6 = 1

y = 7

TH4: x - 4 = -11 và y - 6 = -1

*) x - 4 = -11

x = -7

*) y - 6 = -1

y = 5

Vậy ta có các cặp giá trị (x; y) sau:

(-7; 5); (15; 7); (3; -5); (5; 17)