Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x - 2xy + 5y - 4 = 0
=> 3x - 2xy + 5y = 4
=> 6x - 4xy + 10y = 8
=> 2x ( 3 - 2y ) - 15 + 10y = - 7
=> 2x ( 3 - 2y ) - 5 ( 3 + 2y ) = - 7
=> ( 2x - 5 ) ( 3 - 2y ) = - 7
=> 2x - 5 ; 3 - 2y là ước của - 7
Ta có bảng :
2x - 5 | 1 | 7 | - 1 | - 7 |
3 - 2y | - 7 | - 1 | 7 | 1 |
x | 3 | 6 | 2 | - 1 |
y | 5 | 2 | - 2 | 1 |
Vậy \(\left(x,\text{y}\right)\in\left\{\left(3;5\right),\left(6;2\right);\left(2;-2\right);\left(-1;1\right)\right\}\)
Study well ! >_<
a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...
\(5y-3x=2xy-11\)
\(\Rightarrow2xy+3x-5y-11=0\)
\(\Rightarrow4xy+6x-10y-22=0\)
\(\Rightarrow\left(4x+6x\right)-\left(10y+15\right)=7\)
\(\Rightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\)
\(\Rightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Xét 4 trường hợp ta có:
\(TH1:\hept{\begin{cases}2x-5=1\\2y+3=7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6\Leftrightarrow x=3\\2y=4\Leftrightarrow y=2\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-5=-1\\2y+3=-7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=4\Leftrightarrow x=2\\2y=-10\Leftrightarrow y=-5\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x-5=7\\2y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=12\Leftrightarrow x=6\\2y=-2\Leftrightarrow y=-1\end{cases}}}\)
\(TH3:\hept{\begin{cases}2x-5=-7\\2y+3=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-2\Leftrightarrow x=-1\\2y=-4\Leftrightarrow y=-2\end{cases}}}\)
Vậy bạn tự kết luận
P/s ở dòng cuối TH4 viết nhầm thành TH3 thông cảm xíu nha tại vôi vàng nên mới thế
Còn lại đúng hết bạn nhé :) yên tâm
\(5y-3x=2xy-11\)
\(\Rightarrow2xy+3x-5y-11=0\)
\(\Rightarrow4xy+6x-10y-22=0\)
\(\Rightarrow\left(4xy+6x\right)-\left(10y+15\right)=7\)
\(\Rightarrow2x\left(2y+3\right)-5\left(2y+3\right)=7\Rightarrow\left(2x-5\right)\left(2y+3\right)=7\)
Xét từng trường hợp :
1. \(\hept{\begin{cases}2x-5=1\\2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
2. \(\hept{\begin{cases}2x-5=7\\2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
3. \(\hept{\begin{cases}2x-5=-1\\2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-5\end{cases}}}\)
4. \(\hept{\begin{cases}2x-5=-7\\2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Vậy nghiệm của phương trình là : \(\left(x;y\right)=\left(-1;-2\right);\left(2;-5\right)\left(3;2\right);\left(6;-1\right)\)
dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Ta có \(5y-3x=2xy-17\)
\(\Rightarrow2xy-5y+3x-17=0\)
\(\Rightarrow y\left(2x-5\right)+3x-17=0\)
\(\Rightarrow2y\left(2x-5\right)+6x-34=0\)
\(\Rightarrow2y\left(2x-5\right)+3\left(2x-5\right)-19=0\)
\(\Rightarrow\left(2y+3\right)\left(2x-5\right)=19\)(1)
Vì x;y thuộc Z nên \(\left(2y+3\right)\inℤ;\left(2x-5\right)\inℤ\)(2)
Lại có 19=1.19=(-1)(-19) (3)
Từ (1);(2);(3) ta có bảng gt
2x-5 | 1 | 19 | -1 | -19 |
2y+3 | 19 | 1 | -19 | -1 |
x | 3 | 12 | 2 | -7 |
y | 8 | -1 | -11 | -2 |