Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}=\frac{1}{6}+\frac{y}{3}=\frac{1}{6}+\frac{2y}{6}\)
\(\Leftrightarrow\frac{15}{3x}=\frac{1+2y}{6}\)
\(\Rightarrow\hept{\begin{cases}15=1+2y\\3x=6\end{cases}\Rightarrow\hept{\begin{cases}15=1+2y\\x=2\end{cases}}}\)
Thế x = 2 vào,ta có:
\(\frac{15}{3.2}=\frac{15}{6}=\frac{1.2y}{6}\)
\(\Leftrightarrow\frac{15}{6}=\frac{2y}{6}\Rightarrow y=15:2=7,5=8\)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a/ \(\frac{x}{3}-\frac{5}{y}=\frac{5}{6}\Leftrightarrow\frac{xy-15}{3y}=\frac{5}{6}\Leftrightarrow2xy-30=5y\)\(\Leftrightarrow y\left(2x-5\right)=30\)
Ta phải phân tích số 30 thành tích hai số y là số chẵn vì 2x - 5 là số lẻ. Có ba trường hợp
- trường hợp 1 : \(\hept{\begin{cases}y=30\\2x-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=30\end{cases}}}\)
-Trường hợp 2 : \(\hept{\begin{cases}y=10\\2x-5=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\)
- Trường hợp 3 : \(\hept{\begin{cases}y=6\\2x-5=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=6\end{cases}}}\)
b/ \(xy-2x+y=9\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=7\) \(\Leftrightarrow\left(y-2\right)\left(x+1\right)=7\)
- T/hợp 1 \(\hept{\begin{cases}x+1=1\\y-2=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=9\end{cases}}}\) - T/hợp 2 :\(\hept{\begin{cases}x+1=7\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}}\)
- T/hợp 3 : \(\hept{\begin{cases}x+1=-1\\y-2=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}}\) - T/hợp 4: \(\hept{\begin{cases}x+1=-7\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
c/ \(xy=x+y\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
- T/hợp 1: \(\hept{\begin{cases}x-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\) - T/hợp 2 : \(\hept{\begin{cases}x-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Ta có : \(2x-\frac{x+3}{y}=6\Rightarrow\frac{2xy-x-3}{y}=6\)
=> 2xy - x - 3 = 6y
=> x(2y - 1) - 3 - 6y = 0
=> x(2y - 1) - 6y + 3 - 6 = 0
=> x(2y - 1) - 3(2y - 1) = 6
=> (x - 3)(2y - 1) = 6
Vì \(x;y\inℤ;y\ne0\Rightarrow\hept{\begin{cases}x-3\inℤ\\2y-1\inℤ\end{cases}}\)
Khi đó ta có 6 = 2.3 = (-2).(-3) = 1.6 = (-1).(-6)
Lập bảng xét các trường hợp :
Vậy các cặp (x;y) nguyên thỏa mãn là (9;1) ; (5 ; 2) ; (1;-1)