Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1:
\(pt\Leftrightarrow\hept{\begin{cases}y\ge0\\y^2=\left(x+2\right)^2+1\text{ (1)}\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left[y+x+2\right]\left[y-\left(x+2\right)\right]=1\)
\(\Leftrightarrow\left(y+x+2\right)\left(y-x-2\right)=1\)
\(\Rightarrow\hept{\begin{cases}y+x+2=1\\y-x-2=1\end{cases}}\)hoặc \(\hept{\begin{cases}y+x+2=-1\\y-x-2=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(nhận) hoặc \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)(loại)
Cách 2: Để y nguyên thì biểu thức trong căn phải là một số chính phương
\(A=x^2+4x+5=\left(x+2\right)^2+1=t^2+1\)
+Với \(t=0\) thì \(A=1=1^2\), là một số chính phương --> thỏa
+Với \(t>0\), ta có: \(t^2< t^2+1< \left(t+1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
+Với \(t< 0\) thì \(t^2< t^2+1< \left(t-1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
Vậy t chỉ có thể bằng 0;
\(t=0\Leftrightarrow\hept{\begin{cases}x+2=0\\y=\sqrt{0^2+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a/ y2 = (x2 +2)2 +1 <=> (y-x2 -2)(y+x2 +2)=1 vì x,y nguyên nên 2 đa thức ở vế trái cùng bằng 1 hoặc -1
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ta có \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}=\frac{m}{n}\left(m,n\varepsilonℤ,\left(m,n\right)=1\right).\)
\(\Rightarrow nx-ny\sqrt{2019}=my-mz\sqrt{2019}\Leftrightarrow nx-my=\sqrt{2019}\left(ny-mz\right).\)\(\Rightarrow\hept{\begin{cases}nx-my=0\\ny-mz=0\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{m}{n}\Rightarrow xz=y^2.\)
Khi đó \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-2y^2+y^2=\left(x+z\right)^2-y^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
Vì \(x+y+z\)là số nguyên lớn hơn 1 và \(x^2+y^2+z^2\)là số nguyên tố nên
\(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}\Leftrightarrow}x=y=z=1\)(chỗ này bn tự giải chi tiết nhé, và thử lại nữa)
Kết luận...
1./ Với mọi y nguyên thì: 4y - 1 nguyên và không phải số chính phương.
(vì ngược lại nếu 4y - 1 = m2 => m lẻ => 4y - 1 = (2k + 1)2 => 4y = 4k2 + 4k + 2. VT chia hết cho 4, VP không chia hết cho 4).
=> \(\sqrt{4y-1}\)là 1 số vô tỷ.
2./ Viết PT trở thành: \(\frac{11x}{5}-3y-2=\sqrt{2x+1}-\sqrt{4y-1}\)(2)
Đặt \(A=\frac{11x}{5}-3y-2\)(2) trở thành: \(A+\sqrt{4y-1}=\sqrt{2x+1}\). Bình phương 2 vế:
\(A^2+4y-1+2A\sqrt{4y-1}=2x+1\)
\(\Rightarrow2A\sqrt{4y-1}=2x+2-A^2-4y\)(3)
VT(3) là số vô tỷ để "=" VP(3) là 1 số hữu tỷ thì A = 0.
3./ Do đó: \(\sqrt{4y-1}=\sqrt{2x+1}\Rightarrow2x+1=4y-1\Rightarrow x=2y-1\)
Và: \(0=\frac{11x}{5}-3y-2\Rightarrow11\left(2y-1\right)-15y-10=0\Rightarrow y=3\Rightarrow x=5\).
4./ Phương trình có nghiệm nguyên duy nhất x = 5; y = 3.
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
\(\Leftrightarrow y^2=x^2+4x+5\left(y\ge0\right)\\ \Leftrightarrow y^2-\left(x+2\right)^2=1\\ \Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\)
Vì \(x,y\in Z\Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
\(\left\{{}\begin{matrix}y-x-2=1\\y+x+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=3\\y+x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\left(tm\right)\)
\(\left\{{}\begin{matrix}y-x-2=-1\\y+x+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=1\\y+x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\left(ktm\right)\)
Vậy \(\left(x;y\right)=\left(-2;1\right)\)