Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x}{3}+\frac{1}{y}=1\)
\(\Rightarrow\frac{x.y}{3.y}+\frac{3}{3.y}=\frac{3.y}{3.y}\)
\(\Rightarrow x.y+3=3.y\)
\(\Rightarrow x.y-3.y=-3\)
\(\Rightarrow y.\left(x-3\right)=-3\)
\(\Rightarrow y.\left(x-3\right)=\left(-1\right).3=1.\left(-3\right)\)
Ta lập bảng các giá trị của y và x-3 :
x-3 | -3 | -1 | 1 | 3 |
y | 1 | 3 | -3 | -1 |
Từ đó suy ra :
x | 0 | 2 | 4 | 6 |
y | 1 | 3 | -3 | -1 |
Vậy các số nguyên (x,y) thỏa mãn đề bài là :(0;1) ;(2:3) ;(4:-3) ;(6:-1)
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
a, Ta có: \(\frac{x}{5}=\frac{-3}{7}\Rightarrow xy=-15\Rightarrow xy=-1.15=1.\left(-15\right)=-15.1=15.\left(-1\right)=3.\left(-5\right)=-3.5=-5.3=5.\left(-3\right)\) Vì \(x,y\in Z\)
Vậy \(\left(x;y\right)\in\left\{\left(-1;15\right);\left(1;-15\right);\left(15;-1\right);\left(-15;1\right);\left(3;-5\right);\left(-5;3\right);\left(5;-3\right);\left(-3;5\right)\right\}\)
b, \(\frac{-11}{x}=\frac{y}{-3}\Rightarrow xy=33\Rightarrow xy=3.11=11.3=-3.\left(-11\right)=-11.\left(-3\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(3;11\right);\left(11;3\right);\left(-3;-11\right);\left(-11;-3\right)\right\}\)
a) \(\frac{x}{5}=-\frac{3}{y}\\ xy=-3.5\\ xy=-15\)
Ta có bảng sau:
x | -5 | -3 | 5 | 3 |
y | 3 | 5 | -3 | -5 |
b) \(-\frac{11}{x}=\frac{y}{-3}\\ -11.-3=xy\\ 33=xy\)
Ta có bảng sau:
x | 11 | 3 | -11 | -3 |
y | 3 | 11 | -3 | -11 |
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Vì \(\left(x-2\right)^2\ge0\) và \(\left(y-3\right)^2\ge0\) nên \(\left(x-2\right)^2.\left(y-3\right)^2\ge0\)
Mà \(-4< 0\) nên không có các số nguyên tố x, y thoả mãn đề bài
Vậy không có số nguyên tố x và y
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
Bạn tham khảo đi tôi cô Linh Chi làm rùi tôi gủi link chat riêng
https://olm.vn/hoi-dap/detail/214532932065.html