Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(n - 2) (n - 3) = 1
⇒ a(n - 2) (n - 3) = a0
⇒ (n - 2) (n - 3) = 0
⇒ \(\left[{}\begin{matrix}n-2=0\\n-3=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}n=2\\n=3\end{matrix}\right.\)
Vậy n \(\in\) {2; 3}
=>x,y là các nghiệm của pt là:
x^2+658x-1983=0
=>(x+681)(x-3)=0
=>x=3 hoặc x=-681
=>(x,y)=(3;-681) hoặc (x;y)=(-681;3)
Lời giải:
Giả sử có tồn tại. Khi đó:
$x^3=3x^5+6x^2-18x-213\vdots 3$
$\Rightarrow x\vdots 3$. Đặt $x=3a$ với $a$ nguyên. Khi đó:
$3(3a)^5-(3a)^3+6(3a)^2-18.3a=213$
$729a^5-27a^3+54a^2-54a=213$
$81a^5-3a^3+6a^2-6a=\frac{71}{3}$ (vô lý vì vế trái nguyên còn vế phải thì không)
Do đó không tồn tại số nguyên $x$ thỏa mãn đẳng thức đã cho
Ta có : x−y=−658x−y=−658 \(\Rightarrow\) y=658+xy=658+x
Thế y=658+xy=658+x vào xy=1983xy=1983 ta có :
x.(658+x)=1983x.(658+x)=1983
\(\Rightarrow \)x2+658x−1983=0x2+658x−1983=0
\(\Rightarrow \) x2−3x+661x−1983=0x2−3x+661x−1983=0
\(\Rightarrow \) x(x−3)+661(x−3)=0x(x−3)+661(x−3)=0
\(\Rightarrow \) (x+661)(x−3)=0(x+661)(x−3)=0
\(\Rightarrow \) x+661=0x+661=0 \(\Leftrightarrow\) x=−661x=−661
x−3=0x−3=0 \(\Leftrightarrow\) x=3x=3
\(\Rightarrow\) −661−y=−658−661−y=−658 \(\Leftrightarrow\) y=−3y=−3
3−y=−6583−y=−658 \(\Leftrightarrow\) y=661y=661
Vậy x=−661;y=−3x=−661;y=−3
x=3;y=661
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
Từ 2x2 + 3y2 =77.Suy ra \(0\le3y^2\le77\Rightarrow0\le y^2\le25\)kết hợp với 2x2 là số chẵn => 3y2 là số lẻ =>y2 là số lẻ => y \(\in\){1 ;9 ; 25}
+Với y2 = 1 => 2x2 = 77 - 3 = 74 <=> x2 = 37 (không thỏa mãn)
+Với y2 = 9 => 2x2 = 77 - 27 = 50 <=> x2 = 25 <=> x = 5 hoặc x = -5
+Với y2 = 25 => 2x2 = 77 - 75 = 2 <=> x2 = 1 <=> x = 1 hoặc x = -1
Vậy ta có các trường hợp sau:
ta có: \(2x^2+3y^2=44+33\)
=>\(2x^2+3y^2=2.22+3.11\)
=>\(x^2=22\Rightarrow\sqrt{22}\)
và \(y=11\Rightarrow\sqrt{11}\)
đúng 100%
đúng 100%
đúng 100%