Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>5x^2+2y^2<2xy+4x+2y+1
=>5x^2+2y^2-2xy-4x-2y-1<0
=>x^2-2xy+y^2+4x^2-4x+1+y^2-2y+1<2
=>(x-y)^2+(2x-1)^2+(y-1)^2<2
=>2x-1=1 và y-1=0
=>y=1 và x=1
5x2 + y2 + 2xy - 6x - 2y - 3 = 0
<=> (x2 + 2xy + y2) - 2(x + y) + 1 + (4x2 - 4x + 1) = 5
<=> (x + y - 1)2 + (2x - 1)2 = 5 = 12 + 22
Do x;y nguyên và 2x - 1 lẻ => 2x - 1 \(\in\){1; -1}
Lập bảng:
x + y - 1 | 2 | 2 | -2 | -2 |
2x - 1 | 1 | -1 | 1 | -1 |
x | ||||
y |
(tự tính)
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
a, \(x^2+2=2\sqrt{x^2+1}\)
\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)
\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)
\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)
b,\(x^2+x+2y^2+y=2xy^2+xy+3\)
\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)
\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)
\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)
đoạn sau bạn tự giái tiếp nhé
a) \(x^2+2=2\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)
\(\Leftrightarrow x=0\)
Quan trọng là dự đoán:D
Dự đoán Max =70 khi (x;y) =(-8;0)
Ta có: \(70-P=\frac{6\left(x+y+8\right)^2+17y^2}{11}\ge0\)
Hoặc một phân tích khác:\(70-P=\frac{\left(6x+23y+48\right)^2+102\left(x+8\right)^2}{253}\ge0\)
Điều kiện: \(x,y\in Z\)
Từ biểu thức đã cho suy ra
\(4x^2+8y^2+8xy=4y+8\)
\(\Leftrightarrow\)\(4\left(x^2+2xy+y^2\right)+4y^2-4y+1=9\)
\(\Leftrightarrow\) \(4\left(x+y\right)^2+\left(2y-1\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\)
Ta phải có \(\left(2y-1\right)^2=9\) vì nếu \(4\left(x+y\right)^2=9\) \(\Rightarrow\) \(\left(x+y\right)^2=\frac{9}{4}=2\frac{1}{4}\notin Z\) (vô lí!)
\(\Rightarrow\)\(\hept{\begin{cases}\left(2y-1\right)^2=3^2\\4\left(x+y\right)^2=0\end{cases}}\) hoặc \(\hept{\begin{cases}\left(2y-1\right)^2=\left(-3\right)^2\\4\left(x+y\right)^2=0\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}2y-1=3\\x+y=0\end{cases}}\) hoặc \(\hept{\begin{cases}2y-1=-3\\x+y=0\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\) hoặc \(\hept{\begin{cases}x=1\\y=-1\end{cases}}\) (t/ đk)
Kết luận: ...............
\(2xy\le x^2+y^2\)
\(\Rightarrow x^2+y^2+4x+2y+1>5x^2+2y^2\)
\(\Rightarrow4x^2-4x+1+y^2-2y+1< 3\)
\(\Rightarrow\left(2x-1\right)^2+\left(y-1\right)^2< 3\)
Do \(x\) nguyên \(\Rightarrow2x-1\ne0\), ta có các trường hợp xảy ra:
\(\left\{{}\begin{matrix}\left(2x-1\right)^2=1\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(2x-1\right)^2=1\\\left(y-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\end{matrix}\right.\)
Thế ngược vào BPT ban đầu ta thấy chỉ có các cặp \(\left(x;y\right)=\left(0;1\right);\left(1;1\right);\left(0;0\right)\) là thỏa mãn