Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1)
để pt có nghiệm x nguyên thì delta phải là số chính phương
xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x
-nghĩ vậy chả biết có đúng không <(")
\(x^2+2xy-7y-12=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(y^2+7y+12\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2=\left(y+3\right)\left(y+4\right)\) (1)
Ta thấy VT là số CP với mọi x;y nguyên ; VP là tích 2 số nguyên liên tiếp nên ko phải là số CP
=> (1) vô lý Hay PT trên ko có nghiệm x;y nguyên
\(x^2+2xy-7y-12=0\)
=> \(x^2+y\left(2x-7\right)=12\)
=> \(y=\frac{12-x^2}{2x-7}=\frac{-\left(x^2-12\right)}{2x-7}\)
Vì y là số nguyên nên
\(x^2-12⋮2x-7\)
=> 2x - 7 \(\in\)Ư(1)
=> x = -3 , 4
x=-3 cho y \(\notin\)Z
x= 4 cho y = -4 (t/m)
Vậy .........
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
\(5x^2+2xy+y^2-16x+16=0\)
=>\(x^2+2xy+y^2+4x^2-16x+16=0\)
=>\(\left(x+y\right)^2+\left(2x-4\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
5x2+2xy+y2-4x-40=0
<=>4x2-4x+1+x2+2xy+y2-41=0
<=>(2x-1)2+(x+y)2=41=16+25=25+16
TH1:
(2x-1)2=16 và (x+y)2=25
<=>2x-1=4 hoặc 2x-1=-4 và x+y=5 hoặc x+y=-5
<=>x=5/2(L) hoặc x=-3/2 (L)
Vậy TH này ko thỏa mãn
TH2:
(2x-1)2=25 và (x+y)2=16
<=>2x-1=5 hoặc 2x-1=-5 và x+y=4 hoặc x+y=-4
<=>x=3(nhận) hoặc x=-2 (nhận) và y=1(nhận) hoặc y=6(nhận) hoặc y=-7 (nhận) hoặc y=-2(nhận)
Vậy x={3;-2} ; y={1;6;-7;-2}