Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 :
gọi số nguyên đó là x
vì x>-4 và x<2
=> \(-4< x< 2\)
=>\(x\in\left\{-3;-2;-1;0;1\right\}\)
tổng của các số đó là :
-3+(-2)+(-1)+0+1
=-3+(-2)+0+(-1+1)
=-3-2
=-5
b) gọi số đó là y theo đề bài ; ta có :
\(\left|x\right|< 100\)
\(\Rightarrow\left|x\right|\in\left\{0;1;2;...;99\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;...;\pm99\right\}\)
tổng của các số trên là :
0+(-1+1)+(-2+2)+...+(-99+99)
=0+0+0+...+0
=0
bài 4 :
\(x+1\inƯ\left(x-32\right)\)
\(\Rightarrow x-32⋮x+1\)
ta có : \(x+1⋮x+1\)
\(\Rightarrow\left(x-32\right)-\left(x+1\right)⋮x+1\)
\(\Rightarrow-33⋮x+1\)
\(\Rightarrow x+1\inƯ\left(-33\right)=\left\{\pm1;\pm3\pm11;\pm33\right\}\)
ta có bảng:
x+1 | 1 | -1 | 3 | -3 | 11 | -11 | 33 | -33 |
x | 0 | -2 | 2 | -4 | 10 | -12 | 32 | -34 |
vậy \(x\in\left\{0;\pm2;-4;10;-12;32;-34\right\}\)
Bài 1 :
Ta có \(2n-1⋮n-3\) ( \(n\in Z\))
=> \(2\left(n-3\right)+5⋮n-3\)
=> 5\(⋮n-3\)
=> \(n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Vậy \(n\in\left\{2;-2;4;8\right\}\)
Bài 1:
Ta có: (2n-1)/(n-3)=(2n-6+5)/(n-3)=2+5/(n-3)
Để 2n-1 chia hết cho n-3 thì 2+5/(n-3) phải thuộc Z mà 2 thuộc Z nên 5/(n-3) phải thuộc Z
Hay n-3 thuộc ước của 5 <=>(n-3) thuộc {-5;-1;1;5}
Có bảng:
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
Nhận xét | TM | TM | TM | TM |
Vậy ...
4. x + 1 là ước của x + 32
=> x + 32 chia hết cho x + 1
=> x + 1 + 31 chia hết cho x + 1
=> 31 chia hết cho x + 1
=> x + 1 thuộc Ư(31) = { -31 ; -1 ; 1 ; 31 }
Ta có bảng sau :
x+1 | -31 | -1 | 1 | 31 |
x | -32 | -2 | 0 | 30 |
Vậy x thuộc các giá trị trên
\(\left(-x-4\right)^2-2\left|4+x\right|=0\Leftrightarrow\left(x+4\right)^2-2\left|x+4\right|=0\)(1)
Đặt \(\left|x+4\right|=y\ge0\)suy ra phương trình (1) tương đương với :
\(y^2-2y=0\Leftrightarrow y\left(y-2\right)=0\Rightarrow y=0\)(thoả mãn ) hoặc \(y=2\)( thoả mãn )
1. Với y = 0 ta có phương trình : \(\left|x+4\right|=0\Rightarrow x=-4\)
2. Với y = 2 ta có phương trình : \(\left|x+4\right|=2\Rightarrow x=-6\)hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-6;-4;-2\right\}\)
Bài trên không biết nhưng bài dười biết
| 4 + x | 4 + x là hai giá trị tuyệt đối
Thay x = 1
Ta có :
| 4 + x |
| 4 + 1 |
| 5 |
5
4 + x
4 + 1
5
=> | 4 + x | là giá trị tuyệt đối của 4 + x