\(N=\frac{x^3+1}{3x-1}\) nhận giá trị là số nguyên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Ta có :\(\frac{X^3+X}{X-1}=\frac{X^2\left(X-1\right)+X\left(X-1\right)+2\left(X-1\right)+2}{X-1}\)

\(=X^2+X+2+\frac{2}{X-1}\)

Để E nguyên \(\Leftrightarrow\)\(\frac{2}{X-1}\)nguyên

\(\Leftrightarrow X-1\)thuộc ước của 2

\(\Leftrightarrow X-1\in\left\{-2,-1,1,2\right\}\)

Ta lập bảng

X-1-2-112
X-1023
XétCCCC

Vậy \(X\in\left\{-1,0,2,3\right\}\)

15 tháng 8 2020

c) ĐKXĐ : \(x\ne4\)

Để biểu thức \(\frac{3x^3-4x^2+x-1}{x-4}\) nguyên với \(x\) nguyên thì :

\(3x^3-4x^2+x-1⋮x-4\)

\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)

\(\Leftrightarrow3x^2.\left(x-4\right)+8x.\left(x-4\right)+31.\left(x-4\right)+131⋮x-4\)

\(\Leftrightarrow131⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(131\right)\)

\(\Leftrightarrow x-4\in\left\{-1,1,131,-131\right\}\)

\(\Leftrightarrow x\in\left\{3,5,135,-127\right\}\)

d) ĐKXĐ : \(x\ne-\frac{3}{2}\)

Để biểu thức \(\frac{3x^2-x+1}{3x+2}\) nhận giá trị nguyên với \(x\) nguyên thì :

\(3x^2-x+1⋮3x+2\)

\(\Leftrightarrow3x^2+2x-3x-2+3⋮3x+2\)

\(\Leftrightarrow x.\left(3x+2\right)-\left(3x+2\right)+3⋮3x+2\)

\(\Leftrightarrow3⋮3x+2\)

\(\Leftrightarrow3x+2\inƯ\left(3\right)\)

\(\Leftrightarrow3x+2\in\left\{-1,1,-3,3\right\}\)

\(\Leftrightarrow x\in\left\{-1,-\frac{1}{3},-\frac{5}{3},\frac{1}{3}\right\}\) mà \(x\) nguyên 

\(\Rightarrow x=-1\)

15 tháng 4 2020

\(3-m=\frac{10}{x+2}\)

\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)

=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}

TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)

TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)

15 tháng 4 2020

bài 3:

\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)

\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)

Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên 

Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)

Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng

x-3-5-115
x-2248