Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 4 chia hết cho x - 1
=> x - 1 ∈Ư(4) = {-4; -1; 1; 4}
=> x ∈{-3; 0; 2; 5}
b. 4x + 3 chia hết cho x - 2
=> (4x + 3) - 4.(x - 2) chia hết cho x - 2
=> 4x + 3 - 4x + 8 chia hết cho x - 2
=> 11 chia hết cho x - 2
=> x - 2 ∈Ư(11) = {-11; -1; 1; 11}
=> x ∈{-9; 1; 3; 13}.
x thuộc - 6;-8;-5;-9
http://olm.vn/hoi-dap/question/131938.html
Bạn vào đây tham khảo nha !!!
Ta có:\(\frac{x^2+3x+9}{x+3}\)=\(\frac{x\left(x+3\right)+9}{x+3}\)= x+\(\frac{9}{x+3}\)
Để x\(^2\)+3x+9 \(⋮\)x+3 \(\Rightarrow\)9\(⋮\)x+3 hay x+3\(\in\)Ư(9)={-1;1;-3;3;-9;9}
\(\Rightarrow\)x+3\(\in\){-1;1;-3;3;-9;9}
\(\Rightarrow\)x\(\in\){-4;-2;-6;0;-12;6}
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
Bài 1
Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)
Khi đó:
\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)
Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)
Bài 2:
\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)
\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)
\(=-n^3+4n^2\)
\(=n^2\left(4-n\right)\)
Lập luận với n chẵn thì cái trên luôn chia hết cho 8
1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2
<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2
<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2
<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)
2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))
Thế vào ta được :
A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10
A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10
A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10
A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8
=> A chia hết cho 8 với mọi n chẵn ( đpcm )
a. 4 chia hết cho x - 1
=> x - 1 \(\in\)Ư(4) = {-4; -1; 1; 4}
=> x \(\in\){-3; 0; 2; 5}
b. 4x + 3 chia hết cho x - 2
=> (4x + 3) - 4.(x - 2) chia hết cho x - 2
=> 4x + 3 - 4x + 8 chia hết cho x - 2
=> 11 chia hết cho x - 2
=> x - 2 \(\in\)Ư(11) = {-11; -1; 1; 11}
=> x \(\in\){-9; 1; 3; 13}.
a) Vì 4 chia hết cho x-1 => \(\left(x-1\right)\inƯ\left(4\right)=\left\{1;2;4-1;-2;-4\right\}\)
Ta có bảng sau:
=> x={2;3;5;0;-1;-3}
b) Vì 4x+3 chia hết cho x-2 => 4(x-2)+11 chia hết cho x-2
Mà 4(x-2) chia hết cho x-2 => 11 chia hết cho x-2
\(\Rightarrow\left(x-2\right)\inƯ\left(11\right)=\left\{1;-11;11;-1\right\}\)
Ta có bảng sau:
=> x={3;1;13;-9}