
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2

x2-6y=1<=>x2=1+6y
Vì 6y+1 là số lẻ nên =>x có dạng 2k+1=>x2=(2k+1)2
Ta có (2k+1)^2=1+6y
<=>4k2+4k+1=1+6y
<=>4(k^2+k)=6y
<=>2(k^2+k)=3y
<=>y là số chẵn .mà y là số nguyên tố => y =2
Thay y=2 vào rồi tìm x .....
Bg
Ta có \(x^2-6y^2=1\)(\(x,y\inℤ\); x,y là các số nguyên tố)
=> 6y2 + 1 = x2
=> x2 - 1 = 6y2:
Xét 6y2 + 1 = x2
Vì 6y2 luôn chẵn nên 6y2 + 1 lẻ
Suy ra x2 lẻ --> x lẻ
Xét x2 - 1 = 6y2:
=> x2 - 12 = 6y2 *x2 - 12 = x2 + x - x - 1 = (x2 + x) - (x + 1) = x(x + 1) - 1(x + 1) = (x - 1)(x + 1)
=> (x - 1)(x + 1) = 6y2
Vì x lẻ nên x - 1 chẵn và x + 1 chẵn --> x - 1 và x + 1 là hai số chẵn liên tiếp
Mà 2 số chẵn liên tiếp luôn chia hết cho 8.
=> 6y2 \(⋮\)8
Vì 6 không chia hết cho 8 và ƯCLN (6; 8) = 2
Nên y \(\in\)B (2) --> y chẵn hay y \(⋮\)2
Mà y là số nguyên tố nên y = 2
Thay vào:
x2 - 6.22 = 1
x2 - 24 = 1
x2 = 1 + 24
x2 = 25
x2 = 52
x = 5 (thỏa mãn)
Vậy x = 5 và y = 2


<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992


Đề thật của bài này là
Tìm hai số nguyên tố x và y sao cho: x2 - 2x + 1 = 6y2 - 2x + 2

a) \(x^2-5x+6=0\)
\(=>x^2-5x=-6\)
\(=>x\left(x-5\right)=-6\)
\(=>\orbr{\begin{cases}x=0\\x-5=0\end{cases}=>\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
Vậy x = { 0 ; 5 }

Ta có : x2 - 2x + 1 = 6y2 - 2x + 2
\(\Rightarrow\)x2 - 1 = 6y2 \(\Rightarrow\)6y2 = ( x-1 ).( x+1 ) chia hết cho 2 , do 6y2 chia hết cho 2 .
Khác , x-1 + x+1 = 2x chia hết cho 2 \(\Rightarrow\)( x-1 ) và ( x+1 ) cùng chẵn hoặc là lẻ .
Vậy ( x-1 ) và ( x+1 ) cùng chẵn \(\Rightarrow\)( x-1 ) và ( x+1 ) là hai số chẵn liên tiếp .
( x-1 ).( x+1 ) chia hết cho 8 \(\Rightarrow\)6y2 chia hết cho 8 \(\Rightarrow\)3y2 chia hết cho 4 \(\Rightarrow\)y2 chia hết cho 2 .
y = 2 ( y là số nguyên tố ) , tìm được x = 5

2.
x2 - 2x + 1 = 6y2 - 2x +2
x2 - (2x - 1) = 6y2 - (2x -1) +1
x2 = 6y2 +1
x2 - 1 = 6y2
(x - 1) (x + 1) = 6y2
Ta có:
(x - 1) + (x + 1) =2x chia hết cho 2
(x + 1) - (x - 1) = 2 chia hết cho 2
=> (x-1) và (x+1) cùng tính chẵn lẻ
+/ x -1 và x + 1 cùng lẻ
=> ( x-1) (x +1) là số lẻ
Mà 6y2 luôn là số chẵn
=> Trường hợp này loại
+/ x -1 và x + 1 cùng chẵn
=> ( x-1) (x +1) là hai số chẵn liên tiếp
Mà tích hai số chẵn liên tiếp luôn chia hết cho 8
=> (x - 1) ( x +1) chia hết cho 8
=> 6y2 chia hết cho 8
=>3y2 chia hết cho 4
Mà (3 ,4) = 1
=> y2 chia hết cho 4
Mà x , y là các số nguyên tố
=> y = 2
=> x2 = 6 . 22 +1
=> x2 = 25
=>x = 5
Vậy x =5, y = 2

Ta cần tìm các số nguyên tố \(x , y\) thỏa mãn phương trình:
\(x^{2} - 6 y^{2} = 1\)Bước 1: Biến đổi phương trình
Viết lại phương trình dưới dạng:
\(x^{2} = 6 y^{2} + 1\)Điều này có nghĩa là \(x^{2}\) lớn hơn 1 đơn vị so với bội số của 6.
Bước 2: Xét giá trị của \(x\) là số nguyên tố
Vì \(x\) là số nguyên tố, ta thử với một số giá trị nhỏ:
Trường hợp \(x = 2\)
\(2^{2} - 6 y^{2} = 1 \Rightarrow 4 - 6 y^{2} = 1 \Rightarrow 6 y^{2} = 3\)Phương trình này không có nghiệm nguyên \(y\), vì \(6 y^{2}\) luôn chia hết cho 6, nhưng 3 thì không.
Trường hợp \(x = 3\)
\(3^{2} - 6 y^{2} = 1 \Rightarrow 9 - 6 y^{2} = 1 \Rightarrow 6 y^{2} = 8\)\(6 y^{2} = 8\) không chia hết cho 6, nên cũng không có nghiệm nguyên \(y\).
Trường hợp \(x = 5\)
\(5^{2} - 6 y^{2} = 1 \Rightarrow 25 - 6 y^{2} = 1 \Rightarrow 6 y^{2} = 24\) \(y^{2} = 4 \Rightarrow y = \pm 2\)Vì \(y\) phải là số nguyên tố, nên chọn \(y = 2\).
Bước 3: Kết luận
Cặp số nguyên tố duy nhất thỏa mãn phương trình là \(\left(\right. x , y \left.\right) = \left(\right. 5 , 2 \left.\right)\).