Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Ta chia thành 2 trường hợp :
a)y2+y=x4+x3+x2+x=0 (1)
...(1)<=>y(y+1)=x(x3+x2+x+1)=0
...Pt này có 4 nghiệm sau
...x1=0; y1=0
...x2=0; y2= -1
...x3= -1; y3=0
...x4= -1; y4= -1
b)y2+y=x4+x3+x2+x (# 0) (2)
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì
...(2)<=>y(y+1)=(x2)(x2+x+1+1x1x)
...Đến đây lại chia 2 th :
...+{y=x2
.....{x+1+1x1x=1 (3)
.....(3) vô nghiệm =>th này vô nghiệm
...+{y+1=x2
.....{x+1+1x1x= -1
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại)
...Vậy khi y2+y=x4+x3+x2+x # 0 thì pt vô nghiệm
Tóm lại pt đã cho có 4 nghiệm
x1=0; y1=0
x2=0; y2= -1
x3= -1; y3=0
x4= -1; y4= -1
P/s:Mik ko chắc