\(5.2^{x+1}.2^{-2}-2^x=384\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

a) \(5.2^{x+1}.2^{-2}-2^x=384\Leftrightarrow2^x\left(5.2^{-2}.2-1\right)=384\)\(\Leftrightarrow2^x.1,5=384\Leftrightarrow2^x=384:1,5=256=2^8\)

\(\Rightarrow x=8\)

b) \(3^{x+2}.5^y=45^x\Leftrightarrow3^{x+2}.5^y=3^{2x}.5^x\Leftrightarrow\frac{3^{2x}}{3^{x+2}}=\frac{5^y}{5^x}\)\(\Leftrightarrow3^{2x-x+2}=5^{y-x}\Leftrightarrow3^{x+2}=5^{y-x}\)

\(\Rightarrow x+2=y-x=0\Rightarrow x=y=-2\)

14 tháng 10 2017

d.

33 < 3x < 35

--> 3 < x < 5

suy ra x=4

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

15 tháng 9 2019

a) \(5.2^{x+1}.2^{-2}-2^x=384\)

\(\Leftrightarrow2^x.2.\frac{5}{4}-2^x=384\)

\(\Leftrightarrow2^x.\left(\frac{5}{2}-1\right)=384\)

\(\Leftrightarrow2^x.\frac{3}{2}=384\)

\(\Leftrightarrow2^x=256\)

\(\Leftrightarrow2^x=2^8\)

\(\Leftrightarrow x=8\)

c) \(\left(x+1\right)^{x+1}=\left(x+1\right)^{x+3}\)

\(\Leftrightarrow\left(x+1\right)^{x+3}-\left(x+1\right)^{x+1}=0\)

\(\Leftrightarrow\left(x+1\right)^{x+1}\left[\left(x+1\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^{x+1}=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\in\left\{0;-2\right\}\end{cases}}}\)

Vậy \(x\in\left\{0;-1;-2\right\}\)

4 tháng 9 2020

Bài 1:

Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

\(\Leftrightarrow2x=\frac{1440}{144}=10\)

\(\Rightarrow x=5\)

Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)

=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

21 tháng 6 2017

1)

a) \(0,25^x\cdot12^x=243\)

\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(38^y:19^y=512\)

\(\Leftrightarrow2y\cdot y=512\)

\(\Leftrightarrow2y^2=512\)

\(\Leftrightarrow y^2=256\)

\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)

Vậy \(y_1=-16;y_2=16\)

2)

a) \(3^x+3^{x+2}=2430\)

\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)

\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)

\(\Leftrightarrow10\cdot3^x=2430\)

\(\Leftrightarrow3^x=243\)

\(\Leftrightarrow3^x=3^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

b) \(2^{x+3}-2^x=224\)

\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)

\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)

\(\Leftrightarrow7\cdot2^x=224\)

\(\Leftrightarrow2^x=32\)

\(\Leftrightarrow2^x=2^5\)

\(\Leftrightarrow x=5\)

Vậy \(x=5\)

3)

a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)

Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)

b) \(\left(x+0,7\right)^3=-27\)

\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x+\dfrac{3}{10}=-3\)

\(\Leftrightarrow x=-3-\dfrac{3}{10}\)

\(\Leftrightarrow x=-\dfrac{37}{10}\)

Vậy \(x=-\dfrac{37}{10}\)

4)

a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)

b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)

\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)

\(\Leftrightarrow2x-1=1\)

\(\Leftrightarrow2x=1+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

21 tháng 6 2017

1. a) \(0,25^x.12^x=243\)

\(\Rightarrow\left(0,25.12\right)^x=243\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

b) \(38^y:19^y=512\)

\(\Rightarrow\left(38:19\right)^y=512\)

\(\Rightarrow2^y=2^9\)

\(\Rightarrow y=9\)

Vậy \(y=9.\)

2) a) \(3^x+3^{x+2}=2430\)

\(\Rightarrow3^x\left(1+9\right)=2430\)

\(\Rightarrow3^x=243=3^5\)

\(\Rightarrow x=5\)

Vậy x=5.

b) \(2^{x+3}-2^x=224\)

\(\Rightarrow2^x\left(8-1\right)=224\)

\(\Rightarrow2^x=32=2^5\)

\(\Rightarrow x=5\)

Vậy x=5.

Bài 3: dễ tự làm.