Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{3600-\left(60-n\right)\left(60+n\right)}{60-n}.\) \(P=\frac{3600}{60-n}-\left(60+n\right).\)
Để P là số nguyên tố thì trước hết P phải là số nguyên. Khi n là số nguyên để P là số nguyên thì (60 - n) phải là ước của 3600, P>0.
suy ra n < 60 (Để P dương) như vậy n là ước của 60 \(n\in(1,2,3,4,5,6,10,12,15,30).\)
Kiểm tra lần lượt, ta thấy n = 10 , n= 12 và n = 15 thỏa mãn. n = 10 , P = 2 ; n = 12, P = 3 và n = 15 , P = 5.
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
Không mất tính tổng quát, giả sử p≧qp≧q. Phương trình đã cho tương đương: p(p+1)=(n−q)(n+q+1)p(p+1)=(n−q)(n+q+1).
Do pp là số nguyên tố nên xảy ra 2 trường hợp sau đây:
1.1. Với p∣n−q⇔n=pr+q(r∈N)p∣n−q⇔n=pr+q(r∈N). Suy ra: p+1=r(pr+2q+1)=2(q−2)r+(r−1)(pr+r+5)+p+5≧p+5p+1=r(pr+2q+1)=2(q−2)r+(r−1)(pr+r+5)+p+5≧p+5 (vô lí!)
2.2. Với n=pt−q−1⇔p+1=t(pt−2q−1)n=pt−q−1⇔p+1=t(pt−2q−1). Suy ra: t∣p+1⇔p=st−1⇔s=t(st−1)−2q−1t∣p+1⇔p=st−1⇔s=t(st−1)−2q−1 mà p≧qp≧q nên xét trường hợp t≧3t≧3 thì:
s≧t(st−1)−2(st−1)−1=3s−2+(t−3)(st+s−1)⇔s≦1s≧t(st−1)−2(st−1)−1=3s−2+(t−3)(st+s−1)⇔s≦1
và không may p=st−1≧t−1p=st−1≧t−1 mà t=p+1t=p+1 nên s=1,t=3,p=q=2,n=pt−q−1=3s=1,t=3,p=q=2,n=pt−q−1=3. Xét trường hợp t=1,2t=1,2 thì:
Với t=1t=1 thì q=−1q=−1 (loại!)
Với t=2t=2 thì 2q=3(s−1)⇔3∣q⇔q=32q=3(s−1)⇔3∣q⇔q=3 (qq prime) nên s=3⇒p=st−1=5⇒n=pt−q=6s=3⇒p=st−1=5⇒n=pt−q=6.
Vậy (p,q,n)=(2,2,3),(3,5,6),(5,3,6)
lâ, là ai ạ