K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Rõ ràng p=2 hoặc p=3 thì không thỏa mãn yêu đều đề bài

Ta xét với p>3 khi đó p là số nguyên tố nên p-1 , p+1 phải chẵn nên cả 2 số này đều phải chia hết cho 2 . Mặt khác ta xét tiếp : trong 3 số tự nhiên liên tiếp p-1,p,p+1 thì hẳn phải có một số chia hết cho 3 . Nhưng đó không thể là p do p nguyên tố >3 . Vậy ta chỉ xét 2 trường hợp

*> TH1 : p-1 chia hết cho 3 thì vì p-1 có 6 ước số tự nhiên nên có tiếp 2 khả năng

1) p-1=2^2.3=12 => p=13 =>p+1=14 ( không thỏa mãn )

2) p-1=2.3^2=18=> p=19 =>p+1=20 ( thỏa mãn )

*> TH2 : p+1 chia hết cho 3 thì vì p+1 có 6 ước số tự nhiên nên có tiếp 2 khả năng

1) p+1=2^2.3=12 => p=11=> p-1=10 ( không thỏa mãn )

2) p+1=2.3^2=18 => p=17=> p-1=16 ( không thỏa mãn )

Vậy ta kết luận chỉ có p=19 là thỏa mãn

1 tháng 7 2019

Êu , lần sau cop mạng nhớ ghi nguồn vào bạn =)) ăn xong đéo định trả ơn à ?

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

2 tháng 3 2018

Đặt \(7P+1=a^3\Rightarrow7P=\left(a-1\right)\left(a^2+a+1\right)\)

vì P là số nguyên tố => 7P là tích 2 số nguyên tố 

=>\(\left(a-1\right)\left(a^2+a+1\right)\) là tích 2 số nguyên tố 

nếu 1 trong 2 biểu thức a-1 hoặca^2+a+1 là hợp số => số còn lại =1 

xét a^2+a+1 là hợp số => a-1=1 => a=2, thay vào tìm P

xét a-1 là hợp số => a^2+a=1=1 => a=0 hoặc a=-1, thay vào tìm P

nếu cả 2 số là số nguyên tố , ta cx xét 2 TH

TH1: a-1=7

TH2: a^2+a+1=7 

=> ....

Tôi nghĩ vậy, nếu sai thì thôi :V 

2 tháng 3 2018

Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.[1][2]

Mọi số nguyên dương bất kỳ hoặc là 1, hoặc là số nguyên tố, hoặc là hợp số.

Định lý cơ bản của số học nói rằng mọi hợp số đều phân tích được dưới dạng tích các số nguyên tố và cách biểu diễn đó là duy nhất nếu không tính đến thứ tự của các thừa số.[3][4][5][6][7].

  • Mọi số chẵn lớn hơn 2 đều là hợp số.
  • Mọi hợp số không phải là số nguyên tố.
  • Hợp số nhỏ nhất là 4.
2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại

Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm

Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm

Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)

TH1: p=6k+1

Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)

Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)

vì \(\left(6k+1\right)⋮5̸\)

\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số  nguyên dương, loại.

TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn

\(\Rightarrow p\ge6\) không thoả mãn

Vậy....

Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)

⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d

⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d

⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d

⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d

⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d

d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2

⇒d=1⇒d=1 hoặc d=2d=2

- Nếu m,nm,n cùng lẻ thì d=2d=2

- Nếu m,nm,n khác tính chẵn lẻ thì d=1

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0