Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ hằng đẳng thức \(x^n-1=\left(x-1\right)\left(x^{n-1}+x^{n-2}+\cdots+1\right)\to x^n-1\vdots x-1\).
Ta có \(x^{3n+1}+x^{2n}+1=x\left(x^{3n}-1\right)+\left(x^2+x+1\right)+\left(x^{2n}-x^2\right)\) . Từ trên ta suy ra \(x^{3n}-1\) chia hết cho đa thức \(x^3-1,\) do đó \(x^{3n}-1\) chia hết cho đa thức \(x^2+x+1.\) Vậy \(x^{3n+1}+x^{2n}+1\) chia hết cho đa thức \(x^2+x+1\) khi và chỉ khi \(x^{2n}-x^2\) chia hết cho đa thức \(x^2+x+1.\)
Ta có \(x^{2n}-x^2=x^2\left(x^{2n-2}-1\right)\). Ta viết \(2n-2=3k+r,0\le r\le2.\)
Khi đó \(x^{2n-2}-1=x^{3k+r}-1=x^r\left(x^{3k}-1\right)+\left(x^r-1\right)\), thành thử \(x^r-1\vdots x^2+x+1\to r=0.\)
Vậy \(2n-2\vdots3\to n-1\vdots3\), hay \(n=3k+1,\) với \(k\) là số tự nhiên.
Đáp số: \(n=3k+1,\) với \(k\) là số tự nhiên tùy ý.
để f(x) và g(x) cùng chia hết cho -2x+6
=>\(\hept{\begin{cases}f\left(3\right)=0\\g\left(3\right)=0\end{cases}}\)<=>\(\hept{\begin{cases}\frac{3867}{20}-m+n=0\\\frac{1911}{11}+3m-n=0\end{cases}}\)<=>\(\hept{\begin{cases}-m+n=-\frac{3867}{20}\\3m-n=-\frac{1911}{11}\end{cases}< =>\hept{\begin{cases}m=-183,5386364\\n=-376,8886364\end{cases}}}\)
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
\(x^4+px^2+q=\left(x^4+x^2\right)+\left(p-1\right)x^2+p-1+1-p+q\)
\(=\left(x^2+1\right)\left(x^2+p-1\right)+1-p+q\)
Để thỏa đề bài thì:
\(q+1-p=0\)
\(\Leftrightarrow q=p-1\)