Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để Dlaf số nguyên
-) 2n+7 chia hết n+3
n+3 chia hết n+3 vậy 2(n+3)chia hết n+3
vậy 2n +6 chia hết n+3
suy ra (2n+7)-(2n+6)chia hết n+3
suy ra 1 chia hết n+3
vậy n+3 = 1 hoặc -1
suy ra n= -2 hoặc -4 k đúbg mk nha
Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)
Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)
mà \(n\inℤ\Rightarrow n+3\inℤ\)
Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)
a, \(A=\frac{7}{n-3}\)
Để \(\frac{7}{n-3}\in Z\)thì \(7⋮n-3\Leftrightarrow n-3\inƯ\left(7\right)=\left\{\text{±}1;\text{±}7\right\}\)
Ta có bảng sau:
n - 3 | -1 | -7 | 1 | 7 |
n | 2 | -4 | 4 | 10 |
Vậy \(n\in\left\{-4;2;4;10\right\}\)để\(\frac{7}{n-3}\in Z\)
b,\(B=\frac{13}{2n-5}\)
Để \(\frac{13}{2n-5}\in Z\)thì \(13⋮2n-5\Leftrightarrow2n-5\inƯ\left(13\right)=\left\{\text{±}1;\text{±}13\right\}\)
Ta có bảng sau:
2n - 5 | -1 | -13 | 1 | 13 |
2n | 4 | -8 | 6 | 18 |
n | 2 | -4 | 3 | 9 |
Vậy \(n\in\left\{-4;2;3;9\right\}\)để\(\frac{13}{2n-5}\in Z\)
c, \(C=\frac{-6}{3n+2}\)
Để \(\frac{-6}{3n+2}\in Z\)thì \(-6⋮3n+2\Leftrightarrow3n+2\inƯ\left(-6\right)=\left\{\text{±}1;\text{±}2;\text{±}3;\text{±}6\right\}\)
Ta có bảng sau:
3n + 2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
3n | -3 | -4 | -5 | -8 | -1 | 0 | 1 | 4 |
n | -1 | \(\frac{-4}{3}\) | \(\frac{-5}{3}\) | \(\frac{-8}{3}\) | \(\frac{-1}{3}\) | 0 | \(\frac{1}{3}\) | \(\frac{4}{3}\) |
Vậy \(n\in\left\{\frac{-8}{3};\frac{-5}{3};\frac{-4}{3};\frac{-1}{3};-1;0;\frac{1}{3};\frac{4}{3}\right\}\)để \(\frac{-6}{3n+2}\in Z\)
mà \(n\in Z\)
Vậy \(n\in\left\{-1;0\right\}\)để\(\frac{-6}{3n+2}\in Z\)
a,Để \(A\in Z\)
\(\Rightarrow\)\(\frac{7}{n-3}\in Z\)
\(\Rightarrow\)n-3\(\in\)Ư(7)
n-3 \(\in\){1;-1;7;-7}
n\(\in\){4;2;10;-4}
Vậy n\(\in\){4;2;10;-4}
b,Để \(B\in Z\)
\(\Rightarrow\frac{13}{2n-5}\in Z\)
\(\Rightarrow\)2n-5\(\in\)Ư(13)
2n-5\(\in\){1;-1;13;-13}
2n\(\in\){6;4;18;-8}
n\(\in\){3;2;9;-4}
Vậy n\(\in\){3;2;9;-4}
c,Để \(C\in Z\)
\(\Rightarrow\frac{-6}{3n+2}\in Z\)
\(\Rightarrow\)3n+2\(\in\)Ư(-6)
3n+2\(\in\){1;-1;2;-2;3;-3;6;-6}
n\(\in\){-1;0}
Vậy n \(\in\){-1;0}
Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1
\(\frac{n+4}{2n-1}\)= \(\frac{2\left(n+4\right)}{2n-1}\)= \(\frac{2n+8}{2n-1}\)= \(\frac{2n-1+9}{2n-1}\)= \(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1
=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}
=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}
=> n \(\in\){ 1;2;5; 0; -1; -4}
Vậy...
\(P=\frac{n+4}{2n-1}\)
\(\Leftrightarrow n+4⋮2n-1\)
\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)
\(\Leftrightarrow2n+8⋮2n-1\)
\(\Leftrightarrow2n-1+9⋮2n-1\)
Vì \(2n-1⋮2n-1\)
\(\Leftrightarrow9⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng xét giá trị
2n-1 | 1 | -1 | 3 | -3 | 9 | -9 |
2n | 2 | 0 | 4 | -2 | 10 | -8 |
n | 1 | 0 | 2 | -1 | 5 | -4 |
D là số nguyên khi và chỉ khi 2n+ 7 chia hết cho n + 3
Ta có: 2n + 7 = 2(n + 3) + 1 chia hết cho n + 3
=> 2(n + 3) chia hết cho n + 3 và 1 chia hết cho n + 3
Hay n + 3\(\in\)Ư(1) = {-1;2}
n \(\in\) {-4;-1}
Để phân số \(\frac{2n+3}{7}\) là số nguyên thì:\(2n+3:7\)
\(\implies\) \(2n+3=7k\) (k \(\in\) \(Z\)) \(\implies\) \(2n=7k-3\) (k \(\in\)\(Z\) )
\(\implies\) \(n=\frac{7k-3}{2}\) (k \(\in\) \(Z\))
Vậy với mọi n có dạng \(\frac{7k-3}{2}\) (k \(\in\) \(Z\) ) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên
Ta có: \(A=\frac{2n-1}{n+3}=2-\frac{7}{n+3}\)
Để A nguyên thì \(7\)\(⋮\)\(n+3\)
\(\Rightarrow\)\(n+3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)\(n\)\(=\left\{-10;-4;-2;4\right\}\)
\(A=\frac{2n-1}{n+3}\) có giá trị nguyên
\(\Leftrightarrow2n-1⋮n+3\)
\(\Rightarrow\left(2n+6\right)-6-1⋮n+3\)
\(\Rightarrow2\left(n+3\right)-7⋮n+3\)
có \(2\left(n+3\right)⋮n+3\)
\(\Rightarrow-7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-7\right)\)
\(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow n+3\in\left\{-1;-7;1;7\right\}\)
\(\Rightarrow n\in\left\{-4;-10;-2;4\right\}\)
1. Ta có \(\frac{n^2-2n+3}{n-2}=\frac{n\left(n-2\right)+3}{n-2}=n+\frac{3}{n-2}\)
Để \(\frac{n^2-2n+3}{n-2}\in Z\) thì \(\frac{3}{n-2}\in Z\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
2. \(\frac{x}{4}=\frac{10}{x+3}\)
ĐK: \(x\ne-3\)
\(\frac{x}{4}=\frac{10}{x+3}\)
\(\Leftrightarrow\frac{x}{4}-\frac{10}{x+3}=0\)
\(\Leftrightarrow\frac{x^2+3x-40}{4\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+3x-40=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-8\end{cases}}\left(tmđk\right)\)
b) \(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
ĐK: \(x\ne-2\)
\(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)
\(\Leftrightarrow\left(x+2\right)^3=-49.7\)
\(\Leftrightarrow\left(x+2\right)^3=-343\)
\(\Leftrightarrow x+2=-7\)
\(\Leftrightarrow x=-9\left(tmđk\right)\)
bn Huyền ơi ở câu 1 bn chép sai đầu bài của bạn Thảo rùi
Để \(\frac{2n+3}{7}\in Z\)thì:
2n + 3 chia hết cho 7
=> 2n chia 7 dư 4
=> n chia 7 dư 2
Vậy...
vô số n bạn nha