\(\frac{2n+3}{7}\in Z\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

Để \(\frac{2n+3}{7}\in Z\)thì:

2n + 3 chia hết cho 7

=> 2n chia 7 dư 4

=> n chia 7 dư 2

Vậy...

5 tháng 2 2016

vô số n bạn nha

7 tháng 2 2020

Để Dlaf số nguyên

-) 2n+7 chia hết n+3

n+3 chia hết n+3 vậy 2(n+3)chia hết n+3

vậy 2n +6 chia hết n+3

suy ra (2n+7)-(2n+6)chia hết n+3

suy ra 1 chia hết n+3 

vậy n+3 = 1 hoặc -1

suy ra n= -2 hoặc -4 k đúbg mk nha

7 tháng 2 2020

Ta có : \(\frac{2n+7}{n+3}=\frac{2n+6+1}{n+3}=\frac{2\left(n+3\right)+1}{n+3}=2+\frac{1}{n+3}\)

Để \(C\inℤ\Rightarrow\frac{1}{n+3}\inℤ\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)\)

mà \(n\inℤ\Rightarrow n+3\inℤ\)

Khi đó \(n+3\in\left\{1;-1\right\}\Rightarrow n\in\left\{-2;-4\right\}\)

3 tháng 4 2017
  • A = 2+7+(-6)/-3
  • A= 3/-3
  • A=-1
  • Vậy số nguyên A cần tìm là -1
23 tháng 6 2017

a, \(A=\frac{7}{n-3}\)

Để \(\frac{7}{n-3}\in Z\)thì \(7⋮n-3\Leftrightarrow n-3\inƯ\left(7\right)=\left\{\text{±}1;\text{±}7\right\}\)

Ta có bảng sau:

n - 3-1-717
n2-4410

Vậy \(n\in\left\{-4;2;4;10\right\}\)để\(\frac{7}{n-3}\in Z\)

b,\(B=\frac{13}{2n-5}\)

Để \(\frac{13}{2n-5}\in Z\)thì \(13⋮2n-5\Leftrightarrow2n-5\inƯ\left(13\right)=\left\{\text{±}1;\text{±}13\right\}\)

Ta có bảng sau:

2n - 5-1-13113
2n4-8618
n2-439

Vậy \(n\in\left\{-4;2;3;9\right\}\)để\(\frac{13}{2n-5}\in Z\)

c, \(C=\frac{-6}{3n+2}\)

Để \(\frac{-6}{3n+2}\in Z\)thì \(-6⋮3n+2\Leftrightarrow3n+2\inƯ\left(-6\right)=\left\{\text{±}1;\text{±}2;\text{±}3;\text{±}6\right\}\)

Ta có bảng sau:

3n + 2-1-2-3-61236
3n-3-4-5-8-1014
n-1\(\frac{-4}{3}\)\(\frac{-5}{3}\)\(\frac{-8}{3}\)\(\frac{-1}{3}\)0\(\frac{1}{3}\)\(\frac{4}{3}\)

Vậy \(n\in\left\{\frac{-8}{3};\frac{-5}{3};\frac{-4}{3};\frac{-1}{3};-1;0;\frac{1}{3};\frac{4}{3}\right\}\)để \(\frac{-6}{3n+2}\in Z\)

mà \(n\in Z\)

Vậy \(n\in\left\{-1;0\right\}\)để\(\frac{-6}{3n+2}\in Z\)

24 tháng 6 2017

a,Để \(A\in Z\)

\(\Rightarrow\)\(\frac{7}{n-3}\in Z\)

\(\Rightarrow\)n-3\(\in\)Ư(7)

n-3 \(\in\){1;-1;7;-7}

n\(\in\){4;2;10;-4}

Vậy n\(\in\){4;2;10;-4}

b,Để \(B\in Z\)

\(\Rightarrow\frac{13}{2n-5}\in Z\)

\(\Rightarrow\)2n-5\(\in\)Ư(13)

2n-5\(\in\){1;-1;13;-13}

2n\(\in\){6;4;18;-8}

n\(\in\){3;2;9;-4}

Vậy n\(\in\){3;2;9;-4}

c,Để \(C\in Z\)

\(\Rightarrow\frac{-6}{3n+2}\in Z\)

\(\Rightarrow\)3n+2\(\in\)Ư(-6)

3n+2\(\in\){1;-1;2;-2;3;-3;6;-6}

n\(\in\){-1;0}

Vậy n \(\in\){-1;0}

20 tháng 2 2020

Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1

\(\frac{n+4}{2n-1}\)\(\frac{2\left(n+4\right)}{2n-1}\)\(\frac{2n+8}{2n-1}\)\(\frac{2n-1+9}{2n-1}\)\(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1

=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}

=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}

=> n \(\in\){ 1;2;5; 0; -1; -4}

Vậy...

\(P=\frac{n+4}{2n-1}\)

\(\Leftrightarrow n+4⋮2n-1\)

\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)

\(\Leftrightarrow2n+8⋮2n-1\)

\(\Leftrightarrow2n-1+9⋮2n-1\)

Vì \(2n-1⋮2n-1\)

\(\Leftrightarrow9⋮2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Ta lập bảng xét giá trị 

2n-11-13-39-9
2n204-210-8
n102-15-4
16 tháng 2 2016

D là số nguyên khi và chỉ khi 2n+ 7 chia hết cho n + 3

Ta có: 2n + 7 = 2(n + 3) + 1 chia hết cho n + 3

=> 2(n + 3) chia hết cho n + 3 và 1 chia hết cho n + 3

 Hay n + 3\(\in\)Ư(1) = {-1;2}

n \(\in\) {-4;-1}

18 tháng 2 2020

Để phân số \(\frac{2n+3}{7}\) là số nguyên thì:\(2n+3:7\)

 \(​​\implies\) \(2n+3=7k\) (k \(\in\) \(Z\))                                                                                                                                                                \(\implies\) \(2n=7k-3\) (k \(\in\)\(Z\) )

  \(\implies\) \(n=\frac{7k-3}{2}\) (k \(\in\) \(Z\)

  Vậy với mọi n có dạng \(\frac{7k-3}{2}\) (k \(\in\) \(Z\) ) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên

9 tháng 2 2018

Ta có:     \(A=\frac{2n-1}{n+3}=2-\frac{7}{n+3}\)

Để  A  nguyên  thì   \(7\)\(⋮\)\(n+3\)

\(\Rightarrow\)\(n+3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)\(n\)\(=\left\{-10;-4;-2;4\right\}\)

9 tháng 2 2018

\(A=\frac{2n-1}{n+3}\) có giá trị nguyên

\(\Leftrightarrow2n-1⋮n+3\)

\(\Rightarrow\left(2n+6\right)-6-1⋮n+3\)

\(\Rightarrow2\left(n+3\right)-7⋮n+3\)

           có \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow-7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(-7\right)\)

        \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow n+3\in\left\{-1;-7;1;7\right\}\)

\(\Rightarrow n\in\left\{-4;-10;-2;4\right\}\)

22 tháng 1 2018

1. Ta có \(\frac{n^2-2n+3}{n-2}=\frac{n\left(n-2\right)+3}{n-2}=n+\frac{3}{n-2}\)

Để \(\frac{n^2-2n+3}{n-2}\in Z\) thì \(\frac{3}{n-2}\in Z\Rightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

2. \(\frac{x}{4}=\frac{10}{x+3}\)

ĐK: \(x\ne-3\)

\(\frac{x}{4}=\frac{10}{x+3}\)

\(\Leftrightarrow\frac{x}{4}-\frac{10}{x+3}=0\)

\(\Leftrightarrow\frac{x^2+3x-40}{4\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+3x-40=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-8\end{cases}}\left(tmđk\right)\)

b) \(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)

ĐK: \(x\ne-2\)

\(\frac{x+2}{7}=\frac{-49}{\left(x+2\right)^2}\)

\(\Leftrightarrow\left(x+2\right)^3=-49.7\)

\(\Leftrightarrow\left(x+2\right)^3=-343\)

\(\Leftrightarrow x+2=-7\)

\(\Leftrightarrow x=-9\left(tmđk\right)\)

22 tháng 1 2018

bn Huyền ơi ở câu 1 bn chép sai đầu bài của bạn Thảo rùi