\((\)3n +2 \()\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

ta có (3n+2)\(⋮\)(n-1),\(n-1⋮n-1\)

=>\(\left(3n+2\right)-3.\left(n-1\right)⋮n-1\)

=>\(3n+2-3n+3⋮n-1\)

=>\(5⋮n-1\)

Do \(n\inℤ\)=> \(n-1\inƯ\left(5\right)\)

=> \(n-1\in\left\{\pm1,\pm5\right\}\)

=> \(n\in\left\{-4,0,2,6\right\}\)

Vậy \(n\in\left\{-4,0,2,6\right\}\)

29 tháng 3 2018

=> \(\frac{3n+2}{n-1}\in Z\) mà \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

=> \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được  : \(n=\left\{2;0;6;-4\right\}\)

Vậy.......

12 tháng 5 2017

a,n=-1

b,n=0

kb mk cho kết quả

12 tháng 5 2017

chào bạn Bùi Công Doanh mình rất muốn bạn giải bằng lời cho minh vì như vậy mình mới hiểu bạn à cô mình cho hạn hôm nay là phải xong mai cô mình sẽ đi kiểm tra 

Cảm ơn bạn nhìu

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....

3 tháng 8 2018

dài lắm

3 tháng 8 2018

a) Ta có : 3n + 7 = 3.(n + 3) - 2

Do n + 3 \(⋮\)n + 3

Để 3n + 7 \(⋮\)n + 3 thì 2 \(⋮\)n + 3 => n + 3 \(\in\)Ư(2) = {1; 2}

Với : n + 3 = 1 => n = -2 => n không hợp

         n + 3 = 2 => n = -1 => n không thích hợp

Vậy không có giá trị nào của n \(\in\)N

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

25 tháng 1 2017

a)\(n+7⋮n+2\)

\(\Rightarrow\left(n+2\right)+5⋮n+2\)

\(\Rightarrow5⋮n+2\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

n+2 1 -1 5 -5
n -1 -3 3 -7

Vậy \(n\in\left\{-1;-3;3;-7\right\}\)

b)\(9-n⋮n-3\)

\(\Rightarrow6-\left(n-3\right)\)

\(\Rightarrow6⋮n-3\)

\(\Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

nếu n-3=1 thì n=4

nếu n-3=-1 thì n=2

nếu n-3=2 thì n=5

nếu n-3=-2 thì n=1

nếu n-3=3 thì n=6

nếu n-3=-3 thì n=0

nếu n-3=6 thì n=9

nếu n-3=-6 thì n=-3

Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)

25 tháng 1 2017

c)\(n^2+n+17⋮n+1\)

\(\Rightarrow n\left(n+1\right)+17⋮n+1\)

\(\Rightarrow17⋮n+1\)

\(\Rightarrow n+1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

nếu n+1=1 thì n=0

nếu n+1=-1 thì n=-2

nếu n+1=17 thì n=16

nếu n+1=-17 thì n=-18

Vậy \(n\in\left\{0;-2;16;-18\right\}\)

2 tháng 5 2020

- Vì n thuộc ước của 5 nên: \(n-1\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

- Ta có bảng giá trị:

\(n-1\)\(-1\)\(1\)\(-3\)\(3\)\(-5\)\(5\)\(-15\)\(15\)
\(n\)\(0\)\(2\)\(-2\)\(4\)\(-4\)\(6\)\(-14\)\(16\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)