\(\frac{n^2-1}{2n-1}\) là số nguyên

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Ta có: Q = \(\frac{n^2-1}{2n-1}\)

=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)

Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1

<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}

<=> n \(\in\){1; 0; 2; -1}

a, Để 3/(n-1) nguyên 

<=> 3 chia hết cho n-1 

Mà n-1 nguyên 

=> n-1 thuộc Ư(3)={-3,-1,1,3}  

=> n=-2,0,2,4

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517
6 tháng 7 2016

a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)

\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)

\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)

b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)

\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{1;0\right\}\)  Vì \(n\in Z\)

13 tháng 11 2016

Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:

n-41-13-37-721-21
n537111-325-17

Vậy......

b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

2n-11-12-24-48-8
n101.5 (loại)-0.5 (loại)2.5 (loại)-1.5 (loại)4.5 (loại)-3.5 (loại)

Vậy \(x\in\left\{0;1\right\}\)

18 tháng 7 2019

1,

x-2/ 15=27/15

=>x-2=27

x=29

18 tháng 7 2019

#)Giải :

1.

\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)

\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)

P/s : Câu thứ hai cứ sao sao ý 

25 tháng 9 2016

\(A=\frac{2n+7}{n+1}=\frac{n+1}{n+1}+\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(2+\frac{5}{n+1}\)


 => \(\left(n+1\right)\in U\left(5\right)\)

=>

n+15-51-1
n4-60-2

Tíc mình nha!Kim Phương

24 tháng 6 2018

Để \(A=\frac{2n+7}{n+1}\) là số nguyên 

\(\Rightarrow\left(2n+7\right)⋮n+1\)

\(\Rightarrow\left(n+1\right)⋮n+1=\left(n+1\right)\cdot2⋮n+1=\left(2n+2\right)⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\)Ta có bảng sau :

\(n+1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(0\)\(-2\)\(4\)\(-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)thì \(A\)mới có giá trị nguyên

24 tháng 6 2018

Ta có  \(A=\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để  \(A\in Z\)thì  \(\frac{5}{n+1}\in Z\)

\(\Rightarrow n+1\inƯ_{\left(5\right)}=\left\{\pm1;\pm5\right\}\)

n+11-15-5
n0-24-6

Vậy  \(n\in\left\{0;-2;4;-6\right\}\)

27 tháng 11 2016

\(A=2n:\frac{3n+1}{3}=2n.\frac{3}{3n+1}=\frac{6n}{3n+1}=\frac{6n+2-2}{3n+1}=\frac{2\left(3n+1\right)-2}{3n+1}\)

\(=\frac{2\left(3n+1\right)}{3n+1}-\frac{2}{3n+1}=2-\frac{2}{3n+1}\)

A nguyên <=> \(\frac{2}{3n+1}\) nguyên <=> 2 chia hết cho 3n+1

<=>\(3n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

<=>\(3n\in\left\{-3;-2;0;1\right\}\)

<=>\(n\in\left\{-1;\frac{-2}{3};0;\frac{1}{3}\right\}\)

Vì n nguyên nên  \(n\in\left\{-1;0\right\}\)

27 tháng 11 2016

A=\(=\frac{2n.3}{3n+1}=\frac{2.3n+2-2}{3n+1}=2-\frac{2}{3n+1}.\) 

3n+1=+-1,+-2

n=0

25 tháng 12 2017

P = \(\frac{2n-1}{n-1}\)\(\frac{2\left(n-1\right)+1}{n-1}\)\(2+\frac{1}{n-1}\)

Để  P  nguyên thì  \(\frac{1}{n-1}\)là số nguyên

hay  n - 1  \(\inƯ\left(1\right)=\left\{\pm1\right\}\)

Nếu:   n - 1  =  1    thì  n = 2

Nếu:   n - 1 = -1   thì  n = 0

Vậy  n = 0  hoặc  n = 2

25 tháng 12 2017

cảm ơn bạn dã giúp mình