K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để n+4/n có giá trị nguyên thì n+4\(⋮\)n

Vì n chia hết cho n nên 4 chia hết cho n

-->n thuộc Ư(4)={1;2;4}

Vậy n thuộc {1;2;4}

c) Để 6/n-1 có giá trị nguyên thì 6 chia hết cho n-1

-->n-1 thuộc Ư(6)={1;2;3;6}

+,n-1=1 \(\Rightarrow\)n=2

+,n-1=2 \(\Rightarrow\)n=3

+,n-1=3 \(\Rightarrow\)n=4

+,n-1=6 \(\Rightarrow\)n=7

Vậy n thuộc {2;3;4;7}

11 tháng 1 2017

Để \(\frac{3n+4}{n-1}\)là số nguyên thì:

\(3n+4⋮n-1\)

Mà \(3\left(n-1\right)⋮n-1\)

nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)

Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

12 tháng 2 2016

âm hay dươg

12 tháng 1

a) Phân số \(\dfrac{n+4}{1}\) là số nguyên với mọi x nguyên 

b) \(\dfrac{n-2}{4}\) là một số nguyên khi:

\(n-2\) ⋮ 4

⇒ n - 2 ∈ B(4) 

⇒ n ∈ B(4) + 2

c) \(\dfrac{6}{n-1}\) là một số nguyên khi:

6 ⋮ n - 1

\(\Rightarrow n-1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\) 

d) \(\dfrac{n}{n-2}=\dfrac{n-2+2}{n-2}=1+\dfrac{2}{n-2}\)

Để bt nguyên thì \(\dfrac{2}{n-2}\) phải nguyên:

\(\Rightarrow\text{2}\) ⋮ n - 2

\(\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Rightarrow n\in\left\{3;1;4;0\right\}\)

a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{2;0;4;-2\right\}\)

b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)

hay \(n\in\left\{0;1\right\}\)

c: Để C nguyên thì \(n+3⋮2n-1\)

\(\Leftrightarrow2n+6⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{1;0;4;-3\right\}\)