Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
Ta có:n2+3=n2-12+4=(n+1)(n-1)+4
Để n2+3 chia hết cho n-1 thì (n+1)(n-1)+4 chia hết cho n-1
Mà(n+1)(n-1)chia hết cho n-1 .Nên 4 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng giá trị:
n-1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -3 | -1 | 0 | 2 | 3 | 5 |
Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)
Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)
Hai bài đó chung 1 bài hay 2 câu khác nhau vậy
a)n+2 chia hết cho n-1
n-1 chia hết cho n-1
suy ra n+2 - n-1 chia hết cho n -1
suy ra 3 chia hết cho n-1
suy ra n-1 thuộc ước của 3 ={-1,-3,1,3}
b) 3n-5 chia hết cho n-2
3n-6 chia hết cho n-2
suy ra 3n-5 - 3n-6 chia hết cho n-2
suy ra 1 chia hết cho n-2
suy ra n-2 thuộc ước của 1 ={-1,1}
NHẤN MỎI TAY V~