K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)

mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}

câu 2 làm tương tự

5 tháng 8 2017

Ta có:n2+3=n2-12+4=(n+1)(n-1)+4

Để n2+3 chia hết cho n-1 thì (n+1)(n-1)+4 chia hết cho n-1 

Mà(n+1)(n-1)chia hết cho n-1 .Nên 4 chia hết cho n-1

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng giá trị:

     n-1          -4          -2          -1           1           2           4     
     n         -3     -1      0      2      3      5

Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)

25 tháng 4 2017

Hai bài đó chung 1 bài hay 2 câu khác nhau vậy

a)n+2 chia hết cho n-1 

n-1 chia hết cho n-1 

suy ra n+2 - n-1 chia hết cho n -1

suy ra 3 chia hết cho  n-1 

suy ra n-1 thuộc ước của 3 ={-1,-3,1,3}

b) 3n-5 chia hết cho n-2 

3n-6 chia hết cho n-2

suy ra 3n-5 - 3n-6 chia hết cho n-2

suy ra 1 chia hết cho n-2 

suy ra n-2 thuộc ước của 1 ={-1,1}

NHẤN MỎI TAY V~