Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
a) Ta có:
\(A=-3\cdot7\cdot\left(-2\right)\cdot\left(-13\right)\)
\(A=-21\cdot26\)
\(A=-546\)
\(B=-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot5\)
\(B=2\cdot12\cdot5\)
\(B=2\cdot60\)
\(B=120\)
Mà: \(120>-546\)
\(\Rightarrow B>A\)
Bài 4:
(|x|+73)-26=70
=>|x|+73=96
=>|x|=23
=>x=23 hoặc x=-23
Bài 7:
Để \(\dfrac{4}{2n-3}\) có giá trị là số nguyên
=> 4\(⋮\) 2n-3
=> 2n-3\(\in\) Ư(4)=\(\left\{\pm4;\pm1;\pm2\right\}\)
Ta có bảng sau:
2n-3 | 4 | -4 | 1 | -1 | 2 | -2 |
n | 3,5 | -0,5 | 2 | 1 | 2,5 | 0,5 |
mà n là số nguyên
=> n\(\in\left\{2;1\right\}\)
Vậy để \(\dfrac{4}{2n-3}\) có giá trị là số nguyên thì n\(\in\left\{2;1\right\}\)
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
cho biểu thức
a. A = 3/n+2 (n thuộc z, n khác 2). Tìm n sao cho n thuộc A.
b. B= -5/n-1n(n thuộc z, n khác 1). Tìm n sao cho n thuộc B