\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)

\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)

\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)

Câu còn lại làm nốt

9 tháng 4 2019

\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)

\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)

\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)

30 tháng 7 2017

1 ) 

m = 3 

n = 2 

biết vậy nhưng ko biết cách giải

15 tháng 4 2018

Xin lỗi bn nha mik chỉ làm được câu đầu thôi. Mong bn thông cảm.

X=1/3

23 tháng 1 2017

a=4,b=3

m=3,n=2

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

30 tháng 3 2020

ai biết làm câu nào thì làm giúp mik nha

30 tháng 3 2020

a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3

b) Có 4n-9=2(2n+1)-13

Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1

Vậy để 2(2n+1)-13 chia hết cho 2n+1

=> 13 chia hết cho 2n+1

n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)

Ta có bảng

2n+1-13-113
2n-14-202
n-7-101

d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)

Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)