Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
a) Mình nghĩ nên sửa lại đề 1 chút: a-b=3
b) Có 4n-9=2(2n+1)-13
Vì 2n+1 chia hết cho 2n+1 => 2(2n+1) chia hết cho 2n+1
Vậy để 2(2n+1)-13 chia hết cho 2n+1
=> 13 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1\(\inƯ\left(13\right)=\left\{-13;-1;1;3\right\}\)
Ta có bảng
2n+1 | -13 | -1 | 1 | 3 |
2n | -14 | -2 | 0 | 2 |
n | -7 | -1 | 0 | 1 |
d)Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^n}\)
Ta có: \(\hept{\begin{cases}\frac{1}{2^2}< \frac{1}{1\cdot2}\\......\\\frac{1}{2^n}< \frac{1}{2^{n-1}\cdot2^n}\end{cases}}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2^{n-1}\cdot2^n}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)
\(\Rightarrow A< 1-\frac{1}{2^n}\)(đpcm)
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)