K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

6 tháng 2 2021

Ta viết phương trình về dạng: \(2x^2-\left(2y-1\right)x+\left(2y^2+y-10\right)=0\)

Coi đây là phương trình bậc 2 theo ẩn x thì \(\Delta_x=\left(2y-1\right)^2-8\left(2y^2+y-10\right)=-12y^2-12y+81\)

Điều kiện để phương trình có nghiệm là \(\Delta_x\ge0\)hay \(-12y^2-12y+81\ge0\)\(\Leftrightarrow\frac{-1-2\sqrt{7}}{2}\le y\le\frac{-1+2\sqrt{7}}{2}\)mà y nguyên nên \(-3\le y\le2\)

Lập bảng:

\(y\)\(-3\)\(-2\)\(-1\)\(0\)\(1\)\(2\)
\(x\)\(-1\)\(\varnothing\)\(-3\)\(2\)\(\varnothing\)\(0\)

Vậy phương trình có 4 cặp nghiệm nguyên \(\left(x,y\right)=\left\{\left(2,0\right);\left(0,2\right);\left(-1,-3\right);\left(-3;-1\right)\right\}\)

12 tháng 3 2021

Cách khác: Ta có \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x+1\right)^2=32x\).

Từ đó \(32x⋮\left(x+1\right)^2\).

Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).

+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)

+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)

+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).

Vậy...

NV
12 tháng 3 2021

\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)

\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)

\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)

Do \(x+1\ge2\) nên chỉ có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\) 

TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)

Bạn tự giải

NV
24 tháng 2 2021

\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)

\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)

\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)

Mà x nguyên dương \(\Rightarrow2x-1>0\)

\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\) 

\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

18 tháng 3 2019

\(2x^2+2y^2-2xy+y-x-10=0\)

\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)

Coi pt trên là pt bậc 2 ẩn x 

\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)

    \(=4y^2+4y+1-16y^2-8y+80\)

    \(=-12y^2-4y+81\)

Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)

                                     \(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)

Giải nốt đi , đến đây dễ r

7 tháng 3 2017

CHO TEN ROI NOI

7 tháng 3 2017

ngọc anh ạ