Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có lẽ đề có vấn đề.
b) \(\frac{x-11}{y-10}=\frac{11}{10}\Rightarrow10\left(x-11\right)=11\left(y-10\right)\)
\(10x-110=11y-110\)
\(10x-11y-110+110=0\)
\(10x-11y=0\)
\(10x-\left(10y+y\right)=0\)
\(10x-10y-y=0\)
\(10\left(x-y\right)-y=0\)
TH1: x-y = -12
10 (-12) -y =0
-120 - y =0
y = -120
Thay y = -120 vào x-y = -12
x - (-120) = -12
x + 120 = -12
x= -12 - 120
x= -132
TH2: x-y = 12
10 * 12 -y = 0
120 - y =0
y = 120
Thay y= 120 vào x-y = 12
x - 120 = 12
x= 12 + 120
x= 132
Vậy nếu y= -120 thì x= -132
nếu y= 120 thì x= 132
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow\left(5x-1\right)2y=10\)
Lập bảng xong xét các trường hợp là ra
Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)
=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)
=> 5(xy + y - 1) = 6y
=> 5xy + 5y - 5 = 6y
=> 5xy + 5y - 6y = 5
=> 5xy - y = 5
=> y(5x - 1) = 5
Vì x ; y là số nguyên
=> Ta có 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
y | 1 | 5 | -1 | -5 |
5x - 1 | 5 | 1 | -5 | -1 |
x | 1,2(loại) | 0,4(loại) | -0,8(loại) | 0(tm) |
Vậy y = - 5 ; x = 0
Bài 2
\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)
\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)
\(...\)
Bài 2:
a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)
\(\Leftrightarrow-7< x^2< 49\)
Mà \(x^2\ge0\)và \(x^2\)là 1 SCP
\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)
a) \(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot7=28\\y=4\cdot5=20\\z=4\cdot6=24\end{cases}}\)
b) ta có \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\\\frac{y}{x}=\frac{5}{8}\Rightarrow\frac{x}{8}=\frac{y}{5}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=4,5\)
\(\Rightarrow\hept{\begin{cases}x=4,5\cdot3=13,5\\y=4,5\cdot5=22,5\\z=4,5\cdot8=36\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng ta đc
x/7=y/5=z/6=x/7=y/-10=z/18=y+z/-10+18=60/8=7,5
x=7.7,5=52,5
y=7.-10=-70
z=7.18=126
vậy x=52,5 y=-70 z=126