K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta phải tìm số nguyên dương n để A là số nguyên tố.Với :

A=n^2/60-n=60^2-(60^2-n^2)/60-n=-(60^2-n^2)/60-n+60^2/60-n=-(60+n)+3600/60+n 

Muốn A  là số nguyên tố trước hết A là số nguyên.Như vậy (60-n) là ước nguyên dương của 3600,suy ra n<60 và 3600:(60-n) phải lớn hơn 60+n, đồng thời thỏa mãn A là số nguyên tố.Ta kiểm tra lần lượt các giá trị của n là ước của 60:

Trường hợp 1:n=30 => Ta có A=-90+3600:30=30 không là số nguyên tố => loại

Trường hợp 2:n=15 => Ta có A=-75+3600:45=5 là số nguyên tố => chọn

Trường hợp 3:n=12 => Ta có A=-72+3600:48=3 là số nguyên tố => chọn

Trường hợp 4: n=6,n=5,n=3,n=2 thì A không là số nguyên => loại. Suy ra:n=1 thì A âm => loại

Vậy n=12 và n=15 

Em làm chưa chắc đúng nha, chị thông cảm.
 

27 tháng 1 2017

n+2 E Ư(6)

mà Ư(6)={-1;1;2;-2;3;-3;6;-6}

=>nE{-3;-1;0;-4;1;-5;4;-8}

vậy........

27 tháng 1 2017

mình nhanh rồi nè bạn 

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

20 tháng 10 2015

Câu 1

Nếu an chia hết cho 25 => a chia hết cho25 => a2 chia hết cho 25

Do achia hết cho 5 và 150 cũng xhia hết cho 25 nên a2+150 chia hết cho 25

Câu 3 

Đặt p=2k hoặc =2k+1

.) Nếu p=2k thì p chia hết cho 2 ( loại)

=> p chỉ có thể bằng 2k+1

=>p+7=2k+1+7=2k+8=2(k+4) chia hết cho2 

Vậy p+7 là hợp số

Câu 2 mk chưa hiểu đề lắm 

tick nha

20 tháng 1 2016

bạn là Quỳnh nào vậy rồi mình sẽ giúp

6 tháng 4 2020

Bài 3:

a, A= n+3 / n-1

   A = n-1+4 / n-1

   A = 1 + 4/n-1

Để A là số nguyên thì 4/n-1 nguyên

=>4 chia hết n-1

=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}

=> n thuộc {2;0;3;-1;4;-3}

b, B = 2n+3 / n-1

  B = 2(n-1) + 5 / n-1

  B= 2 + 5/n-1

Để B nguyên thì 5/n-1 nguyên

=> 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={1;-1;5;-5}

=> n thuộc {2;0;6;-4}

10 tháng 2 2018

khổ qua hya là xem trên mạng ý

9 tháng 5 2019

Ta phải tìm số nguyên dương n để A là số nguyên tố. Với:

\(A=\frac{n^2}{60-n}=\frac{60^2-\left(60^2-n^2\right)}{60-n}=\frac{-\left(60^2-n^2\right)}{60-n}+\frac{60^2}{60-n}=-\left(60+n\right)+\frac{3600}{60-n}..\) 

Muốn Alà số nguyên tố, trước hêt A phải là số nguyên . Như vậy (60 - n) phải là ước nguyên dương của 3600, suy ra n < 60  và 3600 : (60 - n) phải lớn hơn 60 + n   (Để A dương) đồng thời phải thỏa mãn A là số nguyên tố. Ta kiểm tra lần lượt các giá trị của n là ước của 60 (sao cho 60 - n là ước của 3600)   

 - Trường hợp 1: n = 30   Ta có A = -90 + 3600 : 30 = 30 không là số nguyên tố

  - Trường hợp 2:  n = 15  Ta có  A = -75 + 3600 : 45 = 5 là số nguyên tố . Vậy n = 15 là giá trị thích hợp

 -  Trường hợp 3:   n = 12  Ta có  A = - 72 + 3600 : 48 = 3 là số nguyên tố . Vậy n = 12 là giá tị thích hợp.

 -  Trường hợp 4:   n = 6 ,  n = 5, n = 3,  n =2 thì A không phải là số nguyên, loại. Trường hợp n = 1 thì A âm, loại.

Trả lời: Có hai giá trị của n thỏa mãn yêu cầu bài ra : n = 12 và n = 15 

 

5 tháng 5 2021

@TRẦN ĐỨC VINH: Gần đúng r bn nhé.