
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


∙∙ n=1n=1 ta thấy thõa mãn
Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1
Vậy n1988+n1987+1n1988+n1987+1 là hợp số
ủng hộ nhá
∙∙ n=1n=1 ta thấy thõa mãn
Nếu n≥2n≥2 thì n1998+n1987+1>n2+n+1n1998+n1987+1>n2+n+1
Mặt khác n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)n1988+n1987+1=n2(n1986−1)+n(n1986−1)+(n2+n+1)
Nên n2+n+1|n1988+n1987+1n2+n+1|n1988+n1987+1
Vậy

bài 113 nâng cao và các chuyên đề toán 8 đại số (Vũ Dương Thụy -Nguyễn Ngọc Đạm)

bài nào vậy bạn
nếu ko có thì
lần sau ko đăng câu hỏi linh tinh nha bạn
^_^

a. (+5).(+11) = 55
b. (-6).9 = -54
c. 23.(-7) = -161
d. (-250).(-8) = 2000
e. (+4).(-3)= -12

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
a)Để B thuộc Z
=>5 chia hết n-3
=>n-3 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {4;2;8;-2}

Xét tử \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(\Rightarrow A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c=2009\)

Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 1:
a; A = \(x^2\) - 4\(x\) + 9
A = \(x^2\) - 4\(x\) + 4 + 5
A = (\(x-2\))\(^2\) + 5
Vì (\(x-2\))\(^2\) ≥ 0 ∀ \(x\) ⇒ (\(x-2\))\(^2\) + 5 ≥ 5 dấu bằng xảy ra khi \(x-2=0\) ⇒ \(x=2\)
Vậy Amin = 5 khi \(x\) = 2
b; B = \(x^2\) - \(x+1\)
B = (\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14)+\frac34\)
B = (\(x-\frac12\))\(^2\) + \(\frac34\)
Vì (\(x-\frac12\))\(^2\) ≥ 0 ∀ \(x\); ⇒ (\(x-\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\)
Dấu = xảy ra khi \(x-\frac12\)= 0 ⇒ \(x\) = \(\frac12\)
Vậy Bmin = \(\frac34\) khi \(x=\frac12\)
Bài 2:
a; M = \(4x-x^2+3\)
M = -(\(x^2-4x+4)+7\)
M = -(\(x^2\) - 2.\(x.2\) + 2\(^2\)) + 7
M = -(\(x-2\))\(^2\) + 7
Vì: (\(x-2)^2\) ≥ 0 ∀ \(x\)
-(\(x-2\))\(^2\) ≤ 0 ∀ \(x\)
-(\(x-2)^2\) + 7 ≤ 7 ∀ \(x\)
Dấu bằng xảy ra khi \(x-2=0\) ⇒\(x=2\)
Vậy Mmax = 7 khi \(x=2\)
b; P = \(2x-2x^2-5\)
P = -2(\(x^2\) - 2.\(x\).\(\frac12\) + \(\frac14\)) - \(\frac92\)
P = -2(\(x-\frac12\))\(^2\) - \(\frac92\)
Vì: (\(x-\frac12\))\(^2\) ≥ 0 ⇒ -2(\(x-\frac12\))\(^2\) ≤ 0
-2(\(x-\) \(\frac12\))\(^2\) - \(\frac92\) ≤ - \(\frac92\) dấu bằng xảy ra khi:
\(x-\frac12\) = 0 ⇒ \(x=\frac12\)
Vậy Pmax = - \(\frac92\) khi \(x=\frac12\)