Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 32 < 2^n < 128
2^5 < 2^n < 2^7
=> 5 < n < 7
Vì n là nguyên dương => n = 6
2, 2.16 > (=) 2^n > 4
2.2^4 > (=) 2^n > 2^2
2^5 > (=) 2^n > 2^2
5 >(=) n > 2 => n = 5 ; 4 ; 3
3, 9.27 < 3^n <= 243
3^2 . 3^3 < 3^n <= 3^5
3^5 < 3^n <=5
5 < n <= 5 ( không có n)
a) 32 < 2^n < 128
hay 2^5 < 2^n < 2^7
=> 5 < n < 7
=> n = 6
b) 2.16 \(\ge\)2^n > 4
hay 2^5 \(\ge\)2^n > 2^2
=> 5 \(\ge\)n > 2
=> n \(\in\left\{5;4;3\right\}\)
c) 9.27 \(\le\)3^n \(\le\) 243
hay 3^5 \(\le\)3^n \(\le\) 3^5
=> 5 \(\le\) n \(\le\) 5
=> n = 5
a,32<2^n<128
n sẽ bằng 6 vì khi 2^6=64>32 và 2^6=64 <128 (thỏa mãn điều kiện)
Vậy :n=6
lm tương tự
\(\frac{1}{27}=3^{\frac{1}{81}}\)
=> \(n=\frac{1}{81}\)
\(\frac{16}{2^n}=\frac{1}{2}=\frac{16}{32}=\frac{16}{2^5}\)
=> n = 5
32 < 2n < 128
=> 25 < 2n < 27
=> 2n = 26
=> n = 6
Bài làm:
\(32< 2^n< 128\)
hay \(2^5< 2^n< 2^7\)
\(\Rightarrow n=6\)
b, \(2\cdot16\ge2^n>4\)
hay \(32\ge2^n>4\)
\(2^5\ge2^n>2^2\)
\(\Rightarrow n\varepsilon\left(3,4,5\right)\)
c, \(9\cdot27\le3^n\le243\)
hay \(63\le3^n\le243\)
\(63\le3^n\le3^5\)
=> \(n\varepsilon\left(3;4\right)\)
#chúc bạn học tốt
Sorry, mình nhầm, câu c n thuộc (4;5) sorry bạn mong bạn bỏ qua
32<2n<128
2x16<2n<2x64
=> 16<n<64
Mà n thuộc N nên n thuộc {17;18;19;...;63}
đổi hết về lũy thừa của 2