K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

23 tháng 8 2016

Nhận xét: \(b^3c-cb^3=0;b^2c-cb^2=0.\).Nên phân thức trở thành:

\(\frac{a^3b-ab^3+c^3a-ca^3}{a^2b-ab^2+c^2a-ca^2}=\frac{a^3\left(b-c\right)-a\left(b^3-c^3\right)}{a^2\left(b-c\right)-a\left(b^2-c^2\right)}\)
\(=\frac{a\left(b-c\right)\left\{a^2-\left(b^2-bc+c^2\right)\right\}}{a\left(b-c\right)\left\{a-\left(b+c\right)\right\}}\)
\(=\frac{a^2-\left(b^2-bc+c^2\right)}{a-\left(b+c\right)}=\frac{a^2-\left(b+c\right)^2+3bc}{a-\left(b+c\right)}\)
\(=a+b+c+\frac{3bc}{a-b-c}\).

4 tháng 6 2016

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

22 tháng 8 2017

Cảm ơn pn Bexiu ^^ Nhưng đây là c/m mà bn ;) ;) Có phải tính đâu =)) Nhưng ko sao ah :3 Cảm ơn pn đã giúp <3 

14 tháng 12 2016

ko biết nhưng hãy tích dùng hộ mình đi

14 tháng 12 2016

Mọi người ơi giúp em với huhu :((((

không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được

THẾ LÀ GIỎI RÙI

2 tháng 2 2016

nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem