\(\left(a^2-1\right).\left(a^2-4\right).\left(a^2-7\right).\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

TH1:Tích có chứa 1 thừa số nguyên âm:

Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)

\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)

\(\Rightarrow a^2=9\Rightarrow a=3\)

TH2: Tích có chứa 3 thừa số nguyên âm:

Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)

\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)

\(\Rightarrow\)Không có giá trị nào của a trong TH2

Vậy a=3

15 tháng 2 2019

Do tích của 4 số đó là số âm nên tồn tại 1 số âm hoặc 3 số âm.

TH1:Tồn tại 1 số âm.khi đó: \(x^2-10< x^2-7\)  vì \(x^2\ge0\)

\(\Rightarrow7< x^2< 10\)

\(\Rightarrow x=\pm3\)

TH2:Tồn tại 3 số âm hay 1 số dương,khi đó: \(x^2-1>x^2-4\)

\(\Rightarrow1< x^2< 4\left(loai\right)\)

Vậy \(x=\pm3\)

P/S: \(loai=\)loại nhé!

7 tháng 1 2018

tích của bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm. 

Ta có : a- 10 < a2 - 7 < a2 - 4 < a2 - 1.

Xét hai trường hợp :

+) có một số âm, ba số dương :

a2 - 10 < 0 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 \(\Rightarrow\)a = \(\mp3\)

+) có ba số âm, một số dương :

a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 \(\Rightarrow\)không có giá trị a nguyên nào thỏa mãn trường hợp trên

Vậy a = \(\mp3\)

13 tháng 1 2016

Dùng thử bảng xét dấu ik

13 tháng 1 2016

dùng bẳng xét dấu cho nhanh

7 tháng 8 2015

a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)

\(\Rightarrow x-\frac{2}{5}<0\)                      hoặc       \(x-\frac{2}{5}>0\)

      \(x+\frac{3}{7}>0\)                                     \(x+\frac{3}{7}<0\)

\(\Rightarrow x<\frac{2}{5}\)                               hoặc        \(x>\frac{2}{5}\)

      \(x>-\frac{3}{7}\)                                          \(x<-\frac{3}{7}\)

\(\Rightarrow-\frac{3}{7}                    hoặc         \(x\in rỗng\) 

vậy \(-\frac{3}{7}

b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)

\(\frac{-1}{12}\le x\le\frac{1}{4}\)

\(\frac{-1}{12}\le x\le\frac{3}{12}\)

\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)

           

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

5 tháng 1 2020

Goi 3 canh cua tam giac la a,b,c . Goi a bang x

ta co :

4a/2=12b/2=xc/2=S

suy ra a=2 ; b=6 ; 2S/x. Do x-y [bat dang thuc trong tam giac]

suy ra S/2-S/6<2S ma x<2S/3.Ma x thuoc Z

suy ra x=4,5

5 tháng 1 2020

{CAU 2 } xet thay h 4 so la so am

suy ra co 1 hoac 3 so la so am trong h do

xet tung truong hop ta co:

+ co 1 so am

[x mu 2] - 10< [x mu 2] -7 suy ra [x mu 2] - 10 <0 < [x mu hai] -7

suy ra 7<[x mu2]<10 suy ra [x mu 2] = 9 suy ra x= 3 hoac -3 


+co 3 so am 1 so duong 

[x mu 2] - 4<[x mu 2 ] -1 <[ x mu 2] <4

suy ra khong co gia tri thoa man

Vay x=3;-3

29 tháng 3 2019

\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)

\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)

29 tháng 3 2019

\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)

Xét 2 trường hợp:

TH1:Trong 4 số có 3 số âm 1 số dương.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)

TH2:Trong 4 số có 3 số dương,1 số âm.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)

Vậy \(x\in\left\{3;-3;4;-4\right\}\)