\(2a^2+b^2=2015.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

Bài 2 : 

\(x^2+xy-2013x-2014y-2015=0\)

\(\Leftrightarrow x^2+xy-2014x-2014y+x-2014-1=0\)

\(\Leftrightarrow\left(x^2+xy\right)-\left(2014x+2014y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow x\left(x+y\right)-2014\left(x+y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow\left(x-2014\right)\left(x+y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow\left(x-2014\right)\left(x+y+1\right)=1\)

Vì x, y là số nguyên dương \(\Rightarrow\hept{\begin{cases}x-2014\inℤ\\x+y+1\inℤ\end{cases}}\)

\(\Rightarrow\)\(x-2014\)và \(x+y+1\)là ước của 1

Lập bảng giá trị ta có:

\(x-2014\)\(-1\)\(1\)
\(x+y+1\)\(-1\)\(1\)
\(x\)\(2013\)\(2015\)
\(y\)\(-2015\)\(-2015\)

Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(2013;-2015\right)\)hoặc \(\left(2015;-2015\right)\)

29 tháng 5 2019

Ta có

\(2a^2\ge8a-8\)(\(2\left(a-2\right)^2\ge0\))

\(7a+\frac{28}{a}\ge28\)

\(b+\frac{1}{b}\ge2\)

\(b^2\ge2b-1\)

Khi đó

\(P\ge a+b+21\ge24\)

Vậy MinP=24 khi a=2, b=1

31 tháng 5 2019

CÁCH KHÁC:

\(P=\left(2a^2-8a+8\right)+\left(b^2-2b+1\right)+\left(7a+\frac{28}{a}\right)+\left(b+\frac{1}{b}\right)+\left(a+b\right)-9\)

     \(=2\left(a-2\right)^2+\left(b-1\right)^2+\left(7a+\frac{28}{a}\right)+\left(b+\frac{1}{b}\right)+\left(a+b\right)-9\)

       \(\ge2\sqrt{7a.\frac{28}{a}}+2\sqrt{b.\frac{1}{b}}+3-9=24\)

1 tháng 5 2024

Bạn làm được bài này chưa ạ

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.
 

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha