K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

a, ta có ab + 1 = 2a + 3b

\(\Leftrightarrow ab-2a-3b+6=5\)5

\(\Leftrightarrow\left(b-2\right)\left(a-3\right)=5\)

mà a , b là số nguyên tố 

Nên \(\left(b-2\right)\left(a-3\right)=1.5=5.1\)

<=>b-2=1 và a-3 = 5

hoặc b -2 = 5 và a- 3 = 1

giải nốt nha

13 tháng 1 2019

chắc câu a vô nghiệm

2 tháng 5 2018

Câu 1 :

Ta có : \(\frac{a}{b}=2\Rightarrow a=2b\)

Thay a = 2b vào M ta có :

\(M=\frac{2b+3b}{2b-7b}=\frac{5b}{-5b}=-1\)

Câu 2 :

Ta có :\(a^2=4b^2\Rightarrow a=\sqrt{4b^2}=2b\)

Thay a = 2b vào P ta có :

\(P=\frac{6b-b}{10b+2b}=\frac{5b}{12b}=\frac{5}{12}\)

Vậy.....................

2 tháng 5 2018

m=3b=2b -7

suy ra 3b+2b +7 bằng m

vậy m 12

15 tháng 2 2016

khó @gmail.com

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$

$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$

$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$

$\Rightarrow b\vdots d$

Mà $5a+2b\vdots d$ nên $5a\vdots d$

Vì $(a,b)=1$ nên $(a,d)=1$

$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$

$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$

$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$

$\Rightarrow a,b\vdots 5$ (vô lý)

Vậy điều giả sử là sai. Tức 2 số đó ntcn.