Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 là tìm giá trị lớn nhất ạ!
ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)
\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)
dấu đẳng thức xảy ra khi xy=yz=zx
Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!
AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)
\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)
\(\Rightarrow S=a^2+b^2\ge13\) (đúng)
Đẳng thức xảy ra khi a=3, b=2.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
Sửa đề \(\hept{\begin{cases}n^2=a+b\\n^3+2=a^2+b^2\end{cases}}\)
Có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow n^4\le2\left(n^3+2\right)\) hay \(n^3\left(n-2\right)-4\le0\)
Nếu \(n\ge3\)thì \(n^3\left(n-2\right)-4\ge n^3-4>0\left(ktm\right)\Rightarrow n=\left\{0;1;2\right\}\)
Với n=0;1 không có số nguyên a,b thỏa mãn
Với n=2 \(\Rightarrow\orbr{\begin{cases}a=1;b=3\\a=3;b=1\end{cases}\left(tm\right)}\)
Vậy (n,a,b)={(2;1;3);(2;3;1)}
\(a^2+b^2=n^3+2\ge0\)\(\Rightarrow\)\(n\ge-1\)
Quỳnh xét thiếu n=-1