Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

Câu hỏi của Trần Anh Đại nếu ko vào được ib vs tui để biết thêm chi tiết!

Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-\left(a^2+b^2+c^2\right)\)
Ta lại có : \(\left(a^2+b^2+c^2\right)\ge0\)
\(\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(2>0\right)\)
\(\Rightarrowđpcm\)

câu 0,5 điểm trong đề thi toán đấy. mk làm rùi nhưng ko chắc chắn lắm. các bạn làm giúp để mk so sánh bài làm nha! cảm ơn nhiều!

Vì \(a,b,c\ne0\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0
=> a + b = - c
=> b + c = - a
=> a + c = - b
Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne0\)
=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)
=> b + c = a + c = a + b
=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)
Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> P = 6
Vậy khi a + b + c = 0 => P = -3
khi a + b + c \(\ne0\) => P = 6

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
Do x+y+z và |x|+|y|+|z| luôn cùng tính chẵn lẻ với mọi nguyên x,y,z
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) có cùng tính chẵn lẻ với a-b+b-c+c-a
Mà a-b+b-c+c-a=0 là số chẵn
Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\) chẵn
Do \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2024^{a}+2025^{a}\)
Nên \(2024^{a}+2025^{a}\) cũng là số chẵn
Nếu a≠0, do 2024 chẵn và 2025 lẻ nên \(2024^{a}+2025^{a}\) lẻ (ko thỏa mãn)
=>a=0
Thay vào đề bài:
\(\left|0-b\right|+\left|b-c\right|+\left|c-0\right|=2\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|=2\)
- Nếu b,c đều khác 0, do b,c nguyên nên \(\left|b\right|\ge1;\left|c\right|\ge1\Rightarrow\left|b\right|+\left|c\right|\ge2\)
\(\Rightarrow\left|b\right|+\left|c\right|+\left|b-c\right|\ge2\)
Mà \(\left|b\right|+\left|c\right|+\left|b-c\right|=2\Rightarrow\begin{cases}\left|b\right|=1\\ \left|c\right|=1\\ \left|b-c\right|=0\end{cases}\) \(\Rightarrow b=c=\pm1\)
- Nếu trong 2 số b, có 1 số bằng 0. Do vai trò b,c như nhau, giả sử b=0
Thay vào: \(\left|0\right|+\left|c\right|+\left|0-c\right|=2\Rightarrow2\left|c\right|=2\Rightarrow\left|c\right|=1\)
\(\Rightarrow c=\pm1\)
Vậy các sộ số nguyên a,b,c thỏa mãn yêu cầu là:
\(\left(a,b,c\right)=\left(0,0,1\right);\left(0,1,0\right),\left(0,0,-1\right),\left(0,-1,0\right);\left(0,1,1\right),\left(0,-1,-1\right)\)
Cho bài toán:
Tìm các số nguyên \(a , b , c\) sao cho:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2024^{a} + 2025^{a}\)
Phân tích:
Bước 1: Bất đẳng thức về tổng các giá trị tuyệt đối
Ta có:
\(\mid a - b \mid + \mid b - c \mid \geq \mid a - c \mid\)
Do đó:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid \geq \mid a - c \mid + \mid c - a \mid = 2 \mid a - c \mid\)
Nhưng bên trái thực ra bằng:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2 \times (\text{kho}ả\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{ch}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{nh} \overset{ˊ}{\hat{\text{a}}} \text{t}\&\text{nbsp};\text{gi}ữ\text{a}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp}; a , b , c )\)
Cụ thể, vì tổng ba giá trị tuyệt đối của 3 điểm trên trục số là gấp đôi độ dài đoạn thẳng lớn nhất giữa chúng.
Bước 2: Xét vế phải
\(2024^{0} + 2025^{0} = 1 + 1 = 2\)
Bước 3: So sánh quy mô hai vế
Bước 4: Xét từng trường hợp
Vế phải là số nhỏ hơn 2 (do \(2024^{a} , 2025^{a} < 1\)), còn vế trái là số nguyên không âm (phải là số nguyên, vì \(a , b , c\) nguyên), nên vế trái ít nhất bằng 0. Rất khó bằng một số phân số nhỏ.
Vế phải là \(2\).
Vậy:
\(\mid a - b \mid + \mid b - c \mid + \mid c - a \mid = 2\)
Vì \(a = 0\), thì \(a = 0\).
Ta cần tìm \(b , c\) nguyên sao cho:
\(\mid 0 - b \mid + \mid b - c \mid + \mid c - 0 \mid = 2\)
Cách này ta dễ kiểm tra.
Ta có:
\(\mid m \mid + \mid m - n \mid + \mid n \mid = 2\)
Bước 5: Tìm \(m , n\) nguyên thỏa mãn
Ta cần tổng ba giá trị tuyệt đối bằng 2.
Thử các trường hợp:
\(0 + \mid 0 - n \mid + \mid n \mid = \mid n \mid + \mid n \mid = 2 \mid n \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid n \mid = 1\)
\(\mid m \mid + \mid m - 0 \mid + 0 = \mid m \mid + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)
\(\mid m \mid + 0 + \mid m \mid = 2 \mid m \mid = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \mid m \mid = 1\)
Thí dụ: \(m = n = \pm 1\)
Bước 6: Tổng hợp nghiệm
Với \(a = 0\), \(b , c\) thỏa mãn:
\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)
Các bộ nghiệm là:
Bước 7: Trường hợp \(a > 0\)
Vế phải rất lớn, vế trái nhỏ nhất là 0 (khi \(a = b = c\)), nhưng không thể bằng một số rất lớn. Do đó, không thỏa.
Kết luận:
\(a = 0\)
và
\(\mid b \mid + \mid b - c \mid + \mid c \mid = 2\)
Cụ thể các bộ \(\left(\right. b , c \left.\right)\) như trên.